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M.any-particle unitarity relations are analyzed and related to maximal analyticity conjectures with 
partICular reference to continuations into unphysical sheets. Poles and cuts associated with unstable 
particles are treated in detail and generalized unitarity relations derived. 

1. INTRODUCTION 

IN this series of papers we continue a study of 
the analytic properties of general S-matrix el­

ements which was initiated for the case of two-par­
ticle scattering in a previous paper,l hereafter 
denoted by UP. Many of the results appearing here 
can be regarded as providing support in favor of 
the analyticity conjucture appearing in the conclu­
sion to UP. The essential point of this conjecture is, 
in current terminology, that of "maximal analytic­
ity,,,2 according to which we assume that suitably 
defined scattering amplitudes may be analytically 
continued arbitrarily to complex values of the 
energy-momentum variables wherever it is not in­
consistent with the unitarity conditions. 

As a starting point, we suppose that the scattering 
amplitudes are themselves analytic functions of the 
real energy-momentum variables in the physical 
regions except at thresholds for new physically 
possible processes. This postulate, together with a 
specification for approaching the correct physical 
limit from the associated complex neighborhood of 
analyticity, is regarded here as a "causality" condi-

tion on the theory, by analogy with the properties 
of the corresponding field theoretical functions which 
follow from the more usual causality condition. Next 
we suppose that the amplitudes are analytically con­
tinuable from these neighborhoods of the physical 
region into a certain domain whose bounding sin­
gularities must have some physical interpretation, 
however indirect, in order to be there at all. We 
propose to show that, apart from selection rules, etc., 
consistency with unitarity is all that is in principle 
required to determine the over-all singularity 
structure. 

As in UP, we restrict the discussion to theories 
with neutral strongly interacting bosons and now 
work entirely with on-mass-shell amplitudes. It is 
our contention that off-mass-shell continuations con­
tain no more physical information than on-mass­
shell quantities and are nonessential adjuncts to a 
complete theory, though they are very useful math­
ematical tools. Of course, this requires that we 
should be able to express all measurable physical 
quantities in terms of on-mass-shell S-matrix ele­
ments or as limits of such. At present, we know of 
no counterexample to this statement. We propose 

* .Based on a thesis submitted in partial fulfillment of the 
reqUIrements for the degree of Doctor of Philosophy at the to demonstrate in this paper that a complete theory 
University of Cambridge (1962). can be constructed in this manner and thus provide 

1 J. Gunson and J. G. Taylor, Phys. Rev. 119, 112 (1960). another alternative to the field theory and other 
2 G. F. Chew, Dispersion Relations (Oliver and Boyd 

Edinburgh, 1961), p. 168. ' off-mass-shell approaches. This contrasts with some 
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formulations of the complete theories based on 
maximal analyticity that have been proposed,3.4 
which make essential use of off-mass-shell contin­
uations.& 

We commence with a summary of formalism and 
notation in the section immediately following, to­
gether with a more precise statement of the maximal 
analyticity principle. In Sec. 3 there are listed equa­
tions expressing unitarity for processes involving up 
to four particles in each state and these are used 
effect continuations onto unphysical sheets. The 
complex poles and branch points reached on carrying 
out these continuations are interpreted as threshold 
singularities associated with states containing un­
stable particles, by proving the natural extensions 
of the unitarity conditions for these cuts. Related 
results concerning these singularities have been ob­
tained independently by Blankenbecler et al.6 Stapp,7 

and recently by Zwanziger,8 Landshoff,9 and Olive.10 

In Sec. 4, we apply the methods developed for un­
stable particle cuts to the stable particle cuts them­
selves, leading to important self-consistency rela­
tions. Analogous problems for the K matrix are 
treated briefly in Sec. 5. Two appendices deal with 
the properties of unitary S matrices in an arbitrary 
number of space dimensions and the proof of uni­
tarity relations for cuts involving two unstable 
particles. 

In Part II, we consider possible methods of 
approach to the problem of constructing complete 
dynamical theories of the S matrix based On an­
alyticity and on-mass-shell unitarity. In Part III, 
we complement the above study of the effects of 
unitarity on analyticity in the energy variables by 
developing a method for continuation in the momen­
tum transfer variables. 

2. S-MATRIX FORMALISM AND MAXIMAL 
ANALYTICITY. 

As a reasonably realistic model which still partially 
avoids the complications of spin and charge variables 
we take the one used in UP of a theory with two 
stable spin-zero particles, the "nucleon" and the 

8 J. C. Polkinghorne, Nuovo Cimento 23, 360 (1962) and 
25, 901, (1962). 

, H. P. Stapp, Phys. Rev. 125,2139 (1963). 
6 However, a recent paper by J. C. Polkinghorne, Phys. 

Rev. 128,2898 (1962), shows that this need not be so. 
S R. Blankenbecler, M. L. Goldberger, S. W. McDowell, 

and S. B. Treiman, Phys. Rev. 123, 692 (1961). 
7 H. P. Stapp, "On the Masses and Lifetimes of Unstable 

Particles" Preprint UCRL-10261. 
8 D. Zwanziger, Phys. Rev. 131, 888 (1963). 
D P. V. Landshoff, Nuovo Cimento 28, 123 (1963). 
10 D. Olive, "On the Analytic Continuation of a Scattering 

Amplitude through a Three-Particle Cut," Cambridge Pre­
print (1962). 

"meson" of nonzero masses m 1 and m2 , respectively. 
The selection rules are taken to be those obtained 
from a conserved multiplicative quantum number 
taking the values -1 for nucleons and + 1 for 
mesons. 

For these particles we construct spaces of ingoing 
and outgoing states. Such a state containing several 
particles is taken to be the direct product of single 
particle states in which energy, momentum, etc., 
are additive. In other words, interaction between 
the particles composing the state is taken to be 
absent or negligible. 

The probability amplitude for the transition from 
a normalised in-state lain) to a normalised out-state 
l.Bout) is given by the S-matrix element 

Spa = (.Bout lain) = (.Bini Slain) (2.1) 

defining the S-operator S. The assumed completeness 
of the set of in- and out-states requires S to be 
unitary if the usual quantum mechanical probability 
amplitude interpretation is to hold, i.e., 

SS* = S*S = I. (2.2) 

A basis for the space of in~states may be formed 
by repeated applications of the creation operators 
a~(k) and a~(k) for nucleons and mesons of 3-
momentum k onto the vacuum state 10). These op­
erators satisfy the usual commutation relations 

[al'(k), a~(k')] = 5(31(k - k') 51"; IL, II = 1,2, (2.3) 

all other commutators vanishing. Setting k. = (k~, k) 
where k~ = ±(lkI2 + m!)l, we may define the 
in-operators 

cp.(k.) = {(2k~)ta.(k) k~ > 0, II = 1, 2. (2.4) 

(-2k~)ta~( -k) k~ < 0, 

The formal normal product expansion for the 
S matrix then takes the form 

'" '" 1 1 
(S - I)/i = E E .... 

1'-1 .-1 iJ.. II. 

· J ... J d4k1 •.• d4kl'd4ql .•• d4q. 

• 5(4) (k1 + ... + kl' + ql + ... + q.) 

" . · II II 5(k i k, - mi) 5(q,q, - m;) 
.. -I ;"'"1 

.: CPl(k1) ••• CPl(kp)CP2(ql) ..• CP2(q,):. (2.5) 

Here WI' .• is an amplitude for a scattering process 
involving a total of IL external nucleons and II 
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external mesons. The sign of the energy component 
k: or q: of the ath nucleon or meson determines 
whether it is to be regarded as ingoing or outgoing. 
This amplitude is the same as the usual Feynman 
amplitude except that those contributions involving 
particles which do not interactll are omitted. 

TOP invariance, which has been proved by Stapp' 
from postulates implied by ours, leads to the relation 

W .... (kl, ... , k .. ; qh ..• , q.) 

= W .... ( -kh .. , , -k .. ; -ql, ... ,-q.). (2.6) 

On combining (2.2), (2.5), and (2.6) and applying 
Wick's theorem,12 we obtain the unitarity relations 

1m W .... (kl , ••• , k .. ; ql, ... , q .. ) 

1 ...... 11 .. • ()(t) = - E E - - E E P 'A' ~ P IT'-2 a-O /3-0 a! {3! .-0 '-0 ' p. , II 

" . IT [(J(P~) 8(PiPi - mm 
i-I 

. (k~. + ... k~. + q •• + ... 
+ q •• + ... + PI + ... + P" + r l + ... + r/3) 

. W:+".'+/3(k~., ... ,k~., PH .,. ,p.; 

'q ... ... , q." r l , ... ,rli) 

, -p,,; 

(2.7) 

where peA; 81p.) denotes the sum over all P.!/8!(P.-8)! 
ways of breaking 1, 2, ... , p. into sets Ah .. , , A. 
and A.+!, ... , A ... This form of the unitarity condi­
tion has the advantage of explicitly demonstrating 
the contributions from the various possible channels 
for a particular process. In general, it is valid only 
in the physical regions appropriate to the various 
possible choices of signs for the kO and qO. A graphical 
method for displaying the separate equations con­
tained in (2.7) is developed in the later sections. 

As some of the W amplitudes still contain vacuum 
singularities, we must define a new type of amplitude 
denoted by V in which these singularities are elimin­
ated, before applying the analyticity postulates. 
Equation (5.5) of Sec. 5 gives the defining equations 
for the V amplitudes to be 

11 Examples of such contributions appear in diagram­
matical form in Eqs. (3.13) and (3.16). 

11 G. C. Wick, Phys. Rev. 80, 268 (1950). 

V .... (kl, ... , k .. ; qll ... , q.) 

= W .... (k l , ••• ,k .. i ql, ... , q.) 

- itt P('Ai ~)p(IT;~) 8!4l(k).. + ... + kA. 
2 .-0 j -0 P. II 

Our basic postulate can now be stated in the form: 
the amplitudes {V .... } are, in given physical regions, 
boundary values of functions analytic in all the 
Lorentz invariant variables on which they depend 
and the boundary values themselves are analytic 
except at the physical thresholds determined by 
unitarity. The way in which the boundary value 
is to be taken is of importance. This is obtained 
from the Feynman prescription of adding small 
negative imaginary parts to the masses of the in­
termediate particles and may be regarded as our 
"causality" condition on the S-matrix theory. This 
procedure displaces the physical threshold singular­
ities to slightly complex values, making it clear on 
which sides of the corresponding cuts the physical 
region lies. If we now transform to the usual pre­
scription of taking the limit with fixed real values 
of the intermediate particle masses and approaching 
through slightly complex values of the external in­
variants, we find that it is not possible to take 
this limit from a uniquely defined "physical sheet" 
except in special cases. To take an example, we may 
choose the set of independent invariants (cf. Ap­
pendix A) 

"energy invariants", 

"momentum transfer 
invariants' , 

for the three-particle scattering process with ingoing 
momenta kl' k2 , ka and outgoing momenta k" ks, ko. 
The vanishing of the Gram determinant of kh k2' ka, 
k4' k5 as required by the four-dimensionality of the 
energy-momentum space then precludes us from 
adding small imaginary parts all of the same sign 
to 8 123, 812, 82a, 8 1a, 845, 846 in the physical region 
near threshold. This that we have to go into an 
"unphysical" sheet in at least one energy channel 
in order to take our point of observation off all 
the physical cuts in the amplitude. This phenomenon 
occurs only for processes involving six or more 
external particles. 

The situation can be remedied if the dimension­
ality of momentum space is relatively unimportant 
for the particular problem being considered. By 
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relaxing the dimensionality restrictions, we may con­
sider an extended function defined on the [n(n-3)/2J­
dimensional complex Euclidean space of the sap 

(cf. Appendix A). This extension is not uniquely 
determined by the physical values of the amplitudes, 
as the physical region is not a real environmenea 

in this larger space. Some of the consequences of 
imposing a generalized unitarity condition for the 
case of arbitrary dimensionality are discussed in 
Appendix A. 

An alternative procedure is to accept the extra 
complication as it stands and forget about precisely 
defined physical sheets, treating the function as a 
whole. 

The next stage in applying the analyticity post­
ulate is to continue these analytic functions away 
from the neighborhoods of the physical regions along 
all possible paths. The only singularities attained 
are those required for consistency with the unitarity 
conditions, the functions being otherwise holomor­
phic. The following sections contain a discussion of 
the self-consistency of the postulates for the simplest 
cases. In order to apply the unitarity conditions, 
we require also the possibility of being able to con­
tinue analytically to the complex-conjugate value 
V* by taking the opposite limits on appropriate 
sheets. 14 

3. UNITARITY CONDITIONS FOR PROCESSES OF 
LOW ORDER 

We commence by writing the unitarity relations 
for the V amplitudes in an obvious graphical nota­
tion. The nucleon and meson are denoted by straight 
and wavy lines respectively. If 3mI/2 < m2 < 2mI, 
then we may write the following relations, valid in 
physical regions up to a total c.m. energy W of 
3mI + m2 

:Ii}: ,. ::JYj:+~+l~"~ 

+L~+L~ 

::tY} -m-~+~ .. ~ 

(3.2) 

+~+~+L~ (3.3) 

13 S. Bochner and W. T. Martin, Several Complex Variables 
(Princeton University Press, Princeton, New Jersey, 1948), 
p.33. 

14 D. Olive, Nuovo Cimento 26, 73 (1962). 

:{Y]: ,. ~~+~+L~ 

+L~+L~+L~ 

+L~+~+L~+ L~ 

+L~+ L~ 

w= m+L~"L~+L~ 
tL~+L~"'L~ 

+L~+L~+L~"'L~ 

w,. m+Lw:0:"L~+L~ 
+L~ + LW"YJ: + L~ 

+L~+L~ 

:{i]::= W+L=0@::+~+ ~ 

+L~ 

:fY} = ~ + Lm:0: + L::fll:@:: 

"L~ .. ~ 

hl-~ +L::0=@:: +L~ 

+L~+L~ 

0=0+L~"L~ 

+L~+L~+L~ 

+L~+L~+L~ 

+L~tL~+L~ 

+~~-~~+L~ 

-L2~_L~~+lh~ 
.,~ 

-'4~ 

:f=-t ::r.:l: L:lB: 
~ = :C!J:" ~ =rzF . 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

These relations are obtained directly from (2.7) and 
(2.8) by retaining only the nonvanishing terms 
allowed by the selection rules and energy-momentum 
conservation. Most of the physical thresholds can 
be obtained by direct inspection of the various 
terms, but some of the anomalous ones appear only 
in the more detailed analysis of Sec. 3.3 et seq. 
A summation convention has been used: whenever 
a term on the rhs does not possess the symmetry 
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of the lhs amplitude under permutations of ingoing 
or outgoing particle lines, then a sum over the 
smallest number of permutations applied to the term 
actually appearing, required to restore the symmetry, 
is implied (neglecting any symmetries between com­
ponent amplitudes). This is most easily illustrated 
by examples. One of the terms in (3.6) when written 
in full becomes 

(3.6a) 

and the final term in (3.11) stands for a sum over 
36 different terms, constructed by permutatuions of 
external lines. Examples of the technique for mul­
tiplication of these quantities are as follows: 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

The integers above the brackets denote the number 
of terms in the symmetrized sum, and the inverse 
factorials give the lin! factor appropriate to each 
integration over an n-particle intermediate state con­
necting any two individual components in the graph 
[this is the factor 1/a! in (2.7)]. 

3.1 Introduction of Interpolating Amplitudes 

In the physical regions there are many overlapping 
branch cuts associated with the threshold singular­
ities. The physical scattering amplitude is defined 
by only one limiting process onto these cuts out 
of many different possible ways. The alternative 
limits define new functions in the physical regions 
which are related to the original scattering ampli-

tudes and in this subsection we will show how to 
obtain some of them in an operational formalism. 
These will be called "interpolating" amplitudes by 
virtue of the fact that they form natural sequences 
of functions terminating at either end with the 
physical amplitude and its complex conjugate. 

Consider a scattering process involving i ingoing 
and j outgoing particles with i :::; j. If we restrict 
the theory to that of a single mass m for the present, 
then the physical region is a subset of the domain 
W2 > (jm)2 where W2 = (k 1 + k2 + ... + k;)2. 
We dissect the space of invariants 8,,~ = (k" + k~)2 
after the manner of Appendix A into subsets J ({3). 
The reason for this subdivision is that for all points 
in a single J ((3o) in the physical region, there is a 
uniquely determined set of terms in our form of 
the unitarity conditions which give nonzero con­
tributions, being the ones allowed by energy-momen­
tum conservation. For this given subregion J({3o), 
which we take to lie in the range (nm)2 < W2 < 
[en + 1)m]2, we see that the usual unitarity condi­
tion is the same as that obtained from the modified 
expression 

T = T* + iTPnT* = T* + iT*P"T, 
(3.17) 

iT = S - I, 

where P" is the projection operator onto states which 
contain no more than n particles. 

For this same range in W 2
, we define sequences 

of operators T., 0 :::; v :::; n, which "interpolate" 
between T and T* in the following manner 

T. = T* + iT*P.T. = T* + iT.P.T*, (3.18) 

in which p. is the projection operator onto a certain 
subset of the set of all states containing not more 
than n particles, such that in the subspace of m­
particle states, P, is either the unit or null operator. 
The sequences in which we are interested are the 
maximal sequences linearly ordered by inclusion 
relations of the form P" C p." there being (n + I)! 
such sequences. 

When p. = P n , (3.18) reduces to (3.17) and we 
set T. = T". When p. = 0, then To = T* is the 
first element of all sequences. The formal solution 
of (3.18) is 

T. = (I - iT*P.)-IT* = T*(1 - iP.T*)-t, (3.19) 

and the existence of the inverses will be verified 
later for certain cases from the existence of solutions 
to the integral equations to be derived from (3.19). 
The unitarity equations for the interpolating op-
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erators can be derived as follows: 

Tv. - T •• = (I - iT*P • .)-IT* - T*(I - iP.,T*)-1 

= i(I - il.'*P.,tI(T*(P •• - P •• )T*)(I - iP •• T*)-1 

= iT •• (P •• (1 - p •• ) - (I - p.JP.,)T.,. (3.20) 

When P" :J p •• , then (I - p,JP" = 0; hence 

1.',. = 1.' •• + iT.,P,.(I - P.,)T." (P •• :J p.,), 

(3.21) 

connecting any two terms in a particular sequence. 
On taking matrix elements we get the required 
interpolating unitarity equations. 

It is apparent that these amplitudes are not asso­
ciated just with the particular energy range and 
amplitude with which we started, but are of general 
application to the whole of the physical regions of 
the S-matrix elements. In conjunction with the an­
alyticity conjectures, it will appear later that these 
interpolating amplitudes are indeed obtained by 
taking appropriate limits between the overlapping 
cuts on the physical region and so do indeed partly 
resolve the problem of separating the discontinuities 
across the various cuts. This separation however is 
not complete, as we have lumped together all cuts 
involving a definite number of particles in the in­
termediate states of the main channel. The refine­
ment of the interpolation process to individual cuts 
is carried out later in this section for special cases. 

The complex conjugates of the interpolating ampli­
tudes possess similar properties and in particular 
we have the relations 

T~, = T(I + iP.,T)-1 = (I + iTP.,tlT, (3.22) 

T~. - T~. = -iT~.(P •• - P •• )T~" (3.23) 

1.'" - T~. = iT.,P.,T~. - iT.,(I - P")T~,, (3.24) 

T. - T~ = iT.P,T~ - iT.(I - P,)T~. (3.25) 

3.2 Interpolating Amplitudes for Simple Processes 

The threshold masses for the various intermediate 
states in the equations (3.1) to (3.10) can be divided 
into two classes, with odd and even nucleon number 
respectively (Fig. 1). 

There are two interpolating amplitudes for an 
odd nucleon number sequence and three for an even 

2",+.., 
'-\+ .... 3"" 2_1 ).", w 
- = - -

FIG. 1. Mass spectrum of intermediate states for the scalar 
nucleon-meson model with m2 ~ 7mt/4. 

sequence. For example, consider the principal 
sequences, 

= - ;5 
(3.26) v~- A B -- C -v 

- == - (3.27) v*"'='" 0 --+ E -=. v, 

where the order in which we "jump" across sets 
of cuts is clearly indicated, in this case being in 
order of increasing mass. Treating the odd-nucleon­
number case in detail, we obtain the following in­
terpolating unitarity conditions for (3.1) to (3.9) 

::[QJ= =.~+~~ 

=KF = ::[Q}: +~::[QJ:[D: 

%-y+L~ 

:&F = =0= +L~ 

m=~+~~+~~ 

M= =KF"'L~+L~ 

i[F= ~+ L:0=lliF 

:tYF = :@: ... L =©:1YF + L~ 

+L~ 

@_ ~+L~+L~ 

+L~+ L~ 

§_ @+L~+~~ 

+L~+L~+L~ 

+L~ + L~ 

(3.1a) 

(3.1b) 

(3.1c) 

(3.2a) 

(3.2b) 

(3.2c) 

(3.3a) 

(3.3b) 

(3.3c) 

(3.4a) 

(3.4b) 

(3.4c) 

(3.5a) 
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@"W+l~+L~ 
+~+~ 

g-m+~+L~ 
+~+L~+\.~ 

@ .. :{QJ:+ L:{Q@+L~ 

+l~+L~ 

:fYJ = ~+L~+L~ 

+l~ 

@:= ::fB:+L~ 

:fID: .. % + L:@::([I: 

:@: .. ::@:+ L:@;©: 

M= ID+l~ 

~= =0:= + l:0=0= 

:{B::= @+l~ 
etc. 

@- =0= + t:0% 

:@F= @+l::@::@: 

=©:" .. .:@:+L~ 
etc. 

(3.5b) 

(3.5c) 

(3.6a) 

(3.6b) 

(3.6c) 

(3.7a) 

(3.7b) 

(3.7c) 

(3.7d) 

(3.Sa) 

(3.8b) 

(3.9a) 

(3.9b) 

(3.9c) 

These equations are valid up to W = 3mI + m2' 
Below the various thresholds in this range, the set 
of equations can be reduced in number as some 
become simple identities, e.g., V = E below W = 
mI + 2m2. As the equations connect boundary values 
from different sheets and form a complete set of 
coupled equations expressing all the other amplitudes 
in terms of, say, the V* amplitudes, a study of the 
analytic properties of their solutions provides a con­
nection between the analytic properties of the over­
all function on different sheets. This has been carried 

out in UP for the simplest case (3.7a). This integral 
equation was first reduced to a set of uncoupled 
algebraic equations by projecting out partial wave 
amplitudes and solved to give the analytic properties 
on the first unphysical sheet. The analytic properties 
of the total amplitude on this sheet have also been 
treated in an earlier paper. IS In this paper, we will 
use the formal expression 

% = [1 - l=0= r =lYj:: (3.28) 

to denote the solution to the integral equation. This 
notation will be used for more complicated cases 
when we have shown by other means that the solu­
tion exists and that the inverse is uniquely defined. 
The solutions for processes involving further par­
ticles depend essentially on the solutions of the 
three-particle integral equations (3.4b) and (3.6b). 

3.3 Analytic Properties of the Solution to a 
Three-Particle Integral Equation 

For our basic example we take the equation (3.6b). 
There are 16 normal thresholds occurring in this 
equation: one 3-particle, six 2-particle and nine 1-
particle thresholds. In addition, there are an in­
finite number of anomalous thresholds corresponding 
to the boundaries of the regions in which the terms 

~,~, 

~, ... 
(3.29) 

are allowed by energy momentum conservation with 
physical momenta. These will be discussed in more 
detail in Parts II and III. 

We wish to transform this equation into a set 
of Fredholm equations so as to be able to apply 
the standard theory of the analytic properties of 
the denominator solutions to these latter equations. 

The first step is to introduce a finer subdivision 
into the sequence of interpolating amplitudes. Con­
sider the set of equations 

(3.30a) 

(3.30b) 

+~3'~+ .•. 
(3.30c) 

16 J. Gunson and J. G. Taylor, Phys. Rev. 121,343, (1961). 
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NOT SUMMED 

® - m+L~+L~ 
.(~ID-r~+~~- ... ) ill 

0=~+L~ 

~E)~~ E (/ + L~) ru 
= (I +L=IAt=)0+L~. 

(3.31a) 

(3.31b) 

(3.31c) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

The interpretation of these equations is as follows. 
The Dl amplitude on the lhs of (3.30a) is obtained 
from the D amplitude by "jumping" across the one 
particle poles, i.e., it is a boundary value taken 
in the same sense as the D amplitude except that 
the one-particle poles are approached from the other 
side. Similarly for the D2 amplitude on the lhs of 
(3.30b) we approach the triangle graph anomalous 
threshold cuts from the "physical" side. The D", 
amplitude on the lhs of (3.30c) is the limiting case 
where all of the" three-nucleon" anomalous thresh­
old graphs are included. The statement that the 
various terms added actually express the discon­
tinuities across the corresponding poles and cuts 
must at present be taken as part of the analyticity­
unitarity connection postulate which appears at the 
end of Sec. 2. However, it is not clear whether this 
postulate is independent of the other postulates; 
certainly it appears consistent with them. 

The expressions denoting the corresponding jumps 
across two-particle cuts appear in (3.31a, b, c). These 
may be taken in any order. The resulting unitarity 
equations are (3.32) and (3.33). Equation (3.33) is 
a pure three-particle equation of a type suitable for 
conversion into a standard Fredholm form and (3.34) 
is used to denote the corresponding solution in a 
formal manner. 

We note an important consequence of these equa­
tions. In some cases, the discontinuities across the 
various cuts are independent of the order in which 

they are taken. For the normal thresholds, the cases 
in which this occurs are precisely those in which 
we have a Steinmann relation16 holding for the cor­
responding field-theoretical generalised retarded 
function. A Steinmann relation, or permutability 
of discontinuities, can occur when the physical cuts 
from two different channels overlap and the channels 
possess at least one particle in common, whichever 
set of particles is used to specify the channel. A 
complete set of conditions for its validity is given 
in Araki's paper. I6 We conjecture that in analysis 
of the problem more detailed than that carried out 
here, the Steinmann relations would be found to 
hold in all the cases implied by the field theory 
results. 

The problem has now been reduced to an equation 
of the generic type 

(3.36) 

where the region of integration in the final term 
must be deformed where necessary to slightly com­
plex values of the intermediate variables in the 
manner indicated by the above discussion, so as to 
avoid passing through pole terms and branch points. 
Written in full, the three-particle unitarity integra­
tion operator in the c.m. system is (apart from some 
constant factors) 

i J ... J d4k). d4k" d4k, O(4)«W, 0) - k). - k" - k.) 

. IT (J(k~) o(k"k" - m2
). (3.37) 

at=A,fJ. P 

If we follow the partial wave projection procedure 
of Appendix A for both sides of (3.36), we o.btain 
the set of simultaneous Fredholm equations 

Xi· n' (W2
, 812, 823, 845 , 846) = Yi,m' (W2 

,812,823,845,846) 

(3.38) 

where the region of integration IS given by (cf. 
Appendix A) 

8).. + 8).. + 8", = W
2 + 3m~, (3.39) 

8).,., 8)." 8", 2: 4m~ (before continuation), 

with the appropriate deformations around poles and 
branch points. It is sufficient for the initial study 

16 H. Araki, J. Math. Phys. 2, 163 (1961). 
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of analytic properties to consider the simpler 
equation 

f(x, Yj t) = g(x, Yj t) 

+ II G K(x, y, x', y' j t)f(x', y' j t) dx' dy', (3.40) 

where G is given by 

x + y + z = t + 3, 

xyz 2:: (t - 1)2, (3.41) 

x, y, z 2:: 4 (before continuation). 

The correspondence with (3.38) and (3.39) is 
obvious. It follows from our basic postulates of 
analyticity for the region of integration that the 
Fredholm solution must exist in the physical region 
for 9 < t < to, for some to > 9. Furthermore, 
the usual series expansions17 of the Fredholm de­
terminant and the first Fredholm minor are abso­
lutely and uniformly convergent on any compact 
subset in t of this interval. The analyticity of these 
quantities then follows from the analyticity in t of 
each term in the expansion. 

When we attempt to continue the determinantal 
solution off the real t axis to complex values, we 
see that analyticity must be maintained unless 

(i) a singularity present in the kernel K or in­
homogeneous term g on a surface t = constant is 
reached, 

(ii) singularities depending only on the x and/or 
y variables appear on the boundary of the region 
of integration in such a manner that it cannot be 
deformed away from them, 

(iii) a singularity of the equations defining the 
boundaries of the region of integration is reached, 

(iv) the Fredholm determinant D(t) vanishes for 
the value of t attained, 

(v) two singularities in the kernel or inhomoge­
neous term coincide and "pinch,,18 the contour. 

Case (ii) is of most interest in the present context 
and leads to new singularities. In the real x-y plane, 
the available phase space for a typical value of t 
is the shaded region of Fig. 2. 

This two-dimensional surface is arbitrarily con­
tinuously deformable to complex values of x and y, 
under the restrictions that the boundaries remain 
on the manifold defined by taking the equality signs 

17 E. T. Whittaker and G. N. Watson, Modern Analysis 
(Cambridge University Press, New York, 1927), 4th ed., 
p.213. 

18 The idea of "pinching" of coincident singularities is 
described in papers of J. C. Polkinghorne and G. R. Screaton, 
Nuovo Cimento 15, 289, 925 (1960). See also lecture notes 
by R. J. Eden, University of Maryland Technical Report 
211 (1961). 

FIG. 2. Three-particle phase space, equal-mass case. 

in the first two equations of (3.41). For a given 
value of t there are six points (indicated by crosses 
in Fig. 2) permanently fixed and specified by 

x = 4 } x = (tl - 1)2 } 

Y = z = tet - 1) Y = z = tt + 1 . 
(3.42) 

and equations with x ~ y ~ z ~ x. 
Suppose there is a pole at x = a2/m2 in g(x, Yj t) 

corresponding to a complex pole on the unphysical 
sheet of the two-particle amplitude at SA!' = a

2
• If t 

is such that 

(3.43) 

on taking the appropriate root, then we can have 
a singularity of the solution at this point, because 
of the nondeformability of the integration contour 
away from this pole. For the equation (3.38) this 
becomes 

(3.44) 

Such a singularity will be shown to possess a simple 
interpretation as a threshold singularity for the pro­
duction of a pair of particles, one unstable with 
complex mass a and one stable with mass m 1• This 
compares with the unstable particle interpretation 
of the complex poles as discussed in UP. Case (iv) 
introduces further possible poles in the same manner 
as for the two-particle unphysical sheet. 

On summing the partial wave expansion we expect 
these properties to be maintained. A remark about 
the convergence of this expansion is in order at 
this point. The presence of the single-particle poles 
and anomalous threshold branch points in the phys­
ical region of the momentum transfer variables pre­
cludes any possibility of convergence at complex 
points. As causality specifies the manner in which 
we must integrate around these singUlarities, the 
individual partial wave amplitudes are well-defined 
and tend uniformly to zero on any compact set in 
the energy variables in a region of analyticity. An 
adaptation of a classical theorem for power series 
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FIG. 3. Paths of continuation to unstable particle cuts, 
(i) W'-plane, (ii) two-particle channels. 

expansions19 then shows that the analyticity at points 
other then the singular points mentioned requires 
that the partial wave expansion converges uniformly 
on any compact set of the physical region not con­
taining any of the singular points. However, the 
converse of this does not hold in general, uniform 
convergence implying only continuity of the sum 
function. A treatment of analyticity in momentum 
transfer variables not using partial wave expansions 
will be given in Part III. 

Having in this manner established the existence 
of solutions to (3.6b), we can now revert to more 
formal methods for the determination of the nature 
of the new singularities. We must of course still 
follow the above order of treatment of the various 
cuts so as to ensure validity of the procedure. 

3.4 UNITARITY RELATIONS ON UNPHYSICAL 
SHEETS 

The first case that we treat is the calculation of 
the discontinuity across the cut attached to the 
threshold branch point at the location given by 
(3.44). Starting from the original equation (3.6b), 
we perform formal continuations to points lying on 
opposite sides of the unstable particle cut, in the 
manner of Fig. 3. 

The formal solution of (3.6b) is 

U= 

([_t@_c0jl(fQ} +l~+l~) (3,45) 

As we must treat the two-particle terms first, we 
partially sum the formal series expansion of this 
expression, summing over all sets of terms of the type 

~+t~+ 

+L~+'" (3.46) 

-~ 
for all fixed arbitrary sequences X and Y of the 
D and V* amplitudes. Thus (3.45) may be written 

@= (I-L:{Q}-L~r (3.47) 
.(:@):+ L~+l~), 

where the sign J [indicates that all terms of the form 
of the rhs of (3.46), in which the two-particle A 
amplitude is replaced by a chain of two or more, 
are omitted from any formal product. The two 
formal continuations depicted in Fig. 3 can now 
be written 

(3.48) 

(3.49) 

Subtracting, the expression for the discontinuity 
becomes 

[@) = B- 0 ,. 

-L[:@]+ (I-l~-ltf.at:fl~ (3.50) 

·(I-l:[Q}-i~'. 

Following our previous assumption that the two­
particle amplitude possesses a pole at 812 = a2 on 
the two-particle unphysical sheet, we use the residue 
to define the single-particle unitarity term (S-wave 
pole only) 

(3.51) 

We introduce the following definition of the unstable 
particle amplitude 

DISC. (!-r.:r") . '::;::o-.r.;:c .... 
12-CHANNEL ~: = \.;----e.r.::: = 

(3.52) 

in terms of the residue at the appropriate pole on 
812 = a2

• The right-hand expression is obtained from 
(3.47). Equation (3.50) then takes its final form, 
on using (3.48), (3.49), and (3.52), 

t}"' :tU + L:©:il + L~+ t ~. (3.53) 

From the basic relation (3.53) we may readily derive 
further unitarity relations, e.g., 

(3.54) 

ft-fi+L~, (3.55) 

where 

(3.56) 

19 P. Dienes, The Taylor Series (Oxford University Press, 
New York, 1931), p. 467. is derived in a similar manner to (3.52). 
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The entire process carried out above can be 
carried out in reverse. If we take as given the three­
particle E amplitude and its continuation into the 
appropriate unphysical sheet together with the un­
stable particle branch cut and its attendant uni­
tarity relation (3.53), then we may show that the 
corresponding continuation of the three-particle D 
amplitude is analytic in the same region. In addition, 
the unstable particle branch point disappears, being 
canceled out by a further contribution from the 
unstable particle pole. 

4. CUTS IN mGHER UNPHYSICAL SHEETS 
AND APPLICATIONS TO STABLE PARTICLE CUTS 

On carrying through the above program for the 
basic four-particle integral equation relating the 
four-particle V and C amplitudes, we find that both 
of the expected cuts at (a + 2m)2 and (2a)2 are 
produced, with appropriate discontinuity equations. 
However, the algebra becomes much more lengthy 
and is relegated to Appendix B. We can see no 
obstacle (other then complexity) to treating the 
general case in the same way, but we have not 
discovered a suitable generating function formalism 
for treating all the n-particle equations simul­
taneously. 

The important feature which emerges is how the 
discontinuities across the higher cuts are built up 
in bits and pieces from the lower-order cuts in minor 
energy channels so as to give precisely the expected 
unitarity condition when we adopt the pole-residue 
definition for scattering amplitudes involving un­
stable particles. However, considering the over-all 
collection of threshold singularities and cuts asso­
ciated with at least one unstable, particle of mass a 
we may ask whether this interrelation of discon­
tinuities is the most general one consistent with 
unitarity. It seems that the answer must be negative, 
for, if we ignore for the moment any violations of 
causality, we may allow extra contributions to the 
discontinuities in the form of cuts which are already 
present in the physical sheet. For example, consider 
the presence of an extra cut in the lower half-plane 
of the three-particle D amplitude of (3.45) with 
discontinuity 

(4.1) 

expressed in terms of given amplitudes involving 
two new particles denoted by the zigzag and dashed 
lines. We find as before that unitarity is maintained 
for the corresponding cut in the continuation of the 
three-particle E amplitude (assuming that these new 
amplitudes satisfy the usual unitarity equations with 

FIG. 4. 

\ .... , (3.S(:l'~ 
..., ..... -" t(p.+m.f 
v* D 

Illustrating the problem of pion-nucleon 
three-nucleon unphysical sheet. 

cut on 

stable particle intermediate states and hence that 
continuations onto other sheets can be defined). In 
addition we find that on higher sheets the expected 
threshold singularities from states with one or more 
particles added occur. With the correct definition 
of the component amplitudes, unitarity is again 
satisfied. 

This latter type of singularity structure can be 
ruled out by the causality condition except for the 
case when the new particles are stable. However, 
in this case they can only be particles already appear­
ing in the original unitarity equations and the ques­
tion arises: what are the discontinuities of the stable 
particle thresholds on unphysical sheets attained by 
going round a suitable branch point? In particular, 
we may ask for the discontinuity of the nucleon + 
meson cut (dotted) of the three-nucleon amplitude 
on the unphysical sheet reached by following the 
path P in Fig. 4. 

Of course, if we were given the information that 
there was a meson pole term with appropriate 
coupling constant on the physical sheet of the two­
nucleon scattering amplitude, then there would be 
no cut on this unphysical sheet. To see this, we 
may imagine the unstable particle cut being trans­
ported up onto the physical sheet so as to coincide 
with the nucleon + meson cut and in the previous 
analysis replace unstable particles by mesons. We 
do not wish to introduce a direct postulate of the 
existence of meson poles in our theory and so we 
consider alternative possibilities which are equiv­
alent to such a postulate. In Part II, we show that 
the absence of the nucleon + meson cut in the un­
physical sheet discussed above is actually equivalent 
to the presence of the meson bound-state pole with 
correct residue. We prefer this form of the bound 
state postulate as being more qualitative in nature 
and avoiding difficulties over what we mean by the 
"correct residue" at a bound-state pole. 

It is an important question to investigate whether 
there is any physical restriction which limits the 
possibilities to the above, thus making a separate 
postUlate unnecessary. Until a satisfactory investiga­
tion of the existence and uniqueness of solutions 
of a complete dynamical theory can be carried 
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through, we cannot say with any confidence that 
other possibilities are excluded. However there are 
still some plausibility arguments which may be 
employed. 

The simplest alternative occurs when no meson 
pole terms are present in nucleon-nucleon scattering, 
in which case the nucleon + meson cut is entirely 
self-generating as we pass from sheet to sheet. Con­
sistency arguments then show that a bound-state 
meson pole in the meson-meson amplitude would 
induce a nonvanishing pole in the nucleon amplitude, 
contradicting our hypothesis. This results in much 
weaker restrictions being placed by unitarity on the 
coupled set of meson scattering equations in that 
the amplitudes with even and odd numbers of mesons 
are no longer related by a bound-state pole decom­
position law of the type dicussed in Part II. In fact, 
it would seem perfectly consistent if all the ampli­
tudes involving an odd meson number now vanished, 
as though a selection rule of the type introduced 
for the nucleons were operating. As we require this 
not to happen, it seems plausible that there is 
associated at least one extra parameter with the 
set of odd meson number amplitudes, as compared to 
the original case. The primitive picture that we have 
at the moment of a complete dynamical S-matrix 
calculation suggests that the number of parameters 
allowed is severely restricted. At this point we may 
consider an analogy with quantum field theory in 
the perturbation solution, in which only a very 
limited number of couplings are allowed if the theory 
is to be renormalizable. It is usually held that non­
renormalizable interactions involve one in an infinity 
of undetermined parameters, which is the reason for 
excluding them from consideration. In S-matrix 
theories, the corresponding restrictions are suggested 
by the work of Martin,20 in the matter of the 
uniqueness of a two-particle amplitude with a given 
spectral function under the hypothesis of polynomial 
boundedness at infinity (and more specifically, the 
validity of a Mandelstam representation). The very 
powerful restrictions which seem implicit in results 
;such as these and those as yet unknown extensions 
10 many-particle amplitudes will presumably have 
the effect on strictly limiting the numbers of free 
parameters. Thus it may be possible to exclude the 
above example on such a basis, as probably requiring 
the specification of an infinite number of parameters 
in any complete theory based on it. This assumes 
that uniqueness theorems no longer hold when we 
drop the restriction of polynomial boundedness. We 
note that, for the nucleons, the selection rule that 

20 A. Martin, Phys. Rev. Letters 9, 410 (1962). 

we have imposed consistently eliminates all odd­
nucleon amplitudes as well as the three-nucleon 
vertex, and so this case may be expected not to 
suffer from the same parameter trouble. In fact, the 
two-nucleon branch point is absent on the unphysical 
sheet reached round the four-nucleon branch point, 
without the introduction of any extra hypotheses. 
This can be shown by appropriately modifying the 
methods of Appendix B for the case of the single 
nucleon pole in the main channel of a three-particle 
scattering amplitude. 

Other cases in which the nucleon + meson cut is 
partly self-generating and partly induced by a meson 
pole are more difficult to discuss though it seems 
that the remarks made in the previous paragraph 
still apply. 

5. K-MATRIX AND RELATED METHODS 

The usefulness of the K matrix21 for the study 
of analytic properties of the elastic branch point 
of a two-particle scattering amplitude has been in­
dicated by Zimmermann.22 The general definition is 

I + iK/2 r • I - S 
S = I _ iK/2 ' K = 2t I + S ' 

T = K + iTK/2 = K + iKT/2, 8 = I + iT, 

(5.1) 

for which the K amplitude K,. .• is defined by the 
normal product expansion (2.5) with (8 - I) ~ iK 
and W,. .• ~ K~ .•. From (5.1) and these formal expan­
sions, we may derive the equations which define the 
K,. .• amplitudes in terms of the W~ .• amplitudes 
in the same manner as the general unitarity equa­
tions (2.7). 

5.1 Analytic Continuation of the K-Matrix Elements 
and Interpolating Sequences. 

Let us carry through the procedure introduced 
in Sec. 3.1 for the K-matrix equation (5.1), by de­
fining a set of "interpolating" K matrices. Using 
the same type of notation, these are defined by 
equations like 

T = K. + iK.P.T/2 

= K. + iTP.K./2 : K .. = K : Ko = T, (5.2) 

satisfying 

K., - K.o = -iK.,(P.,(1 - p •• ) 

- (I - P.JP.,)K • ./2 (5.3) 
21 B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 

499 (1950). 
22 W. Zimmermann, Nuovo Cimento 23, 249 (1961). Also 

R. Oehme, ibid. 20, 334 (1961). 
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K. - K~ = iK.(I - P.)K~ = iK~(I - P.)K •. 

(5.4) 

On taking matrix elements of the latter equation, 
we obtain an iterative sequence of integral equations 
for the interpolating amplitudes, for which the prob­
lem of analytic continuation can be studied by the 
methods of Sec. 3.3. However, unlike S-matrix ele­
ments, we find that these continued functions are 
not analytic continuations of each other and we now 
have a different function for every subregion of 
analyticity of the physical region. The vacuum and 
one-particle intermediate states are particularly im­
portant, and we separate these first, writing the 
equations in the symmetrized form which is appli­
cable to all channels (cf. 2.7). 

5.2 Trea1ment of Vacuum and One-Particle 
Intermediate States. 

Let us define the symmetrized interpolating ampli­
tudes K~O) (taking a single mass theory for simplic­
ity) by 

K~OJ(kl' '" , kn) = Wn(kl , ... , kn ) 

- -2
i E P(a; ~)K.(ka., ... ,ka ,) 

• -1 n 

. W n -.(ka,+1l ••• ,ka.) {)(4)(k a• + '" + ka.). (5.5) 

This expression is identical in form to equations for 
the removal of vacuum singularities as treated by 
Zimmermann23 and Watanabe24 and so we naturally 
identify the K~O) as the Vn amplitudes of Sec. 2. 
The absence of vacuum singularities for this case 
in any channel can be demonstrated by direct sub­
stitution in the appropriate form of the symme­
trized unitarity relation (2.7), when all terms 
containing disconnected parts cancel out. Note that 
the K~O) as defined are not present in the crude 
interpolating sequences defined in (5.3), but only 
in certain refinements. 

The one-particle equations now take the form 

K~l)(kl' '" ,kn) = K~O)(kl' ... , kn) - ~ %P(a;~) 

. J d4q()(qO) {)(q2 - m 2
) ()C4J(k a• + ... + ka, - q) 

·K;~.\(ka" ... ,k",; -q)K~~'+I(k".+" ... ,ka.; q), 

(5.6) 

defining the next symmetrized interpolating ampli­
tude K~l). After carrying out the integration over 
the () functions and combining terms which differ 

23 W. Zimmermann, Nuovo Cimento, 13, 503 (1959). 
24 I. Watanabe, Progr. Theoret. Phys. (Kyoto) 4, 371 

(1953). 

only in the argument of the () functions, we see 
that the K(1) amplitudes contain no single-particle 
singularities of the type {)«k", + ... + kaY - m2

) 

in the physical regions, assuming that the K~O) 
possess the pole terms indicated by the physical 
region unitarity relations. As before, this is demon­
strated by substitution into (2.7) and observing the 
cancellation of all single-particle terms. 

In (5.5) and (5.6) we have the first expressions 
in what is a symmetrized version of the interpolating 
sequences (5.3), but which seem less useful for many­
particle states. In addition, it does seem possible 
to express it in terms of operator equations and 
so we treat only the cases (5.5) and (5.6), in which 
no trouble over the existence of solutions arises. 

APPENDIX A: KINEMATICS OF MANY-PARTICLE 
PROCESSES. 

As we go to processes involving increasingly more 
external particles from the two-particle elastic case, 
the number of useful choices of a set of independent 
Lorentz invariant variables soon becomes embar­
rassingly large. The most convenient choice depends 
on the particular problem being considered, but we 
can make several general remarks about them . 

In general, if we have i incoming and j outgoing 
particles, N = i + j, the number of independent 
invariants is 3N - 10 for N ~ 4 and 0 for N < 4 
(for three-dimensional momentum space). We are 
not treating the external masses as variables in this 
enumeration. On the other hand, the number of 
associated processes involving the same total number 
of external particles is 2(N-l) - N - 1 and each 
corresponding "total energy" variable 8 a, a.... = 
(k a • + k a • + ... )2 has a claim to be considered 
as "basic." 

The physical regions are connected subsets of the 
space of invariants, being defined by the condition 
that all external momenta are real. 

It is sometimes convenient to regard the space 
of invariants as being embedded in the [tN(N - 1)]­
dimensional space of the 8 a p. The 8 a ,,, .... ,,, for r > 2 
can always be expressed as linear combinations of 
the 8 ap and external masses. Before imposing energy­
momentum conservation and four-dimensionality of 
Lorentz space, we must regard the ka as N dimen­
sional. Energy-momentum conservation then im­
poses N independent linear conditions. On succes­
sively reducing the dimensions of momentum space 
to 4, we are imposing 1, 2, 3, ... , (N - 5) in­
dependent nonlinear conditions successively, which 
may be written as the vanishing of the Gram de­
terminants of some of the k". The resulting space 
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is thus a complex algebraic variety, almost every­
where of dimension 3N - 10. The nonlinear condi­
tions affect only processes involving six or more 
external particles. 

The physical regions are conveniently dissected 
into subregions bounded by the surfaces 

8 a • a .... = 4m2
, 9m2

, 16m2
, ••• (AI) 

(for the equal mass case). Here a 1a2 ... runs over 
all possible channels. These subregions are denoted 
collectively by J (fJ) where ((3) is a label specifying 
the number of particles in the highest mass states 
in every channel for which there is sufficient energy 
to see it as a real state for a process occurring in 
the region considered. The set of all J (fJ) then 
possesses a natural ordering "> " defined by: 
J(fJ) > J(fJ') ~ ({3) > ({3') , where the latter in­
equality holds when it is satisfied in the usual sense 
for integers of the sets ({3), ({3') in every channel. 

Consider the process depicted in Fig. 5, in which 
we have inserted p intermediate particles. 

~~' ~: 
~7T.tl.71Z17L~ 
Itt 'I.~ RJ 

FIG. 5. Unitarity diagram with p intermediate particles. 

We work in the c.m. system and consider how many 
invariants are required to specify completely a "con­
figuration" of incoming, intermediate, or outgoing 
particles. For example, the i 3-vectors k,. are specified 
completely as to their relative orientation by (3i-7) 
invariants in conjunction with the total energy 
square W 2 = (kl + k2 + ... + ki )2. The total 
of 3(i + j) - 10 is then made up from W 2

, (3i - 7) 
"incoming" invariants, (3j - 7) "outgoing" in­
variants and three other invariants specifying the 
relative orientation of the incoming and outgoing 
configurations. 

The problem of transforming integral equations 
of the type (3.36) into Fredholm form is simplified 
by the introduction of partial-wave amplitudes. 
These may be regarded as a straightforward gen­
eralisation of the procedure followed in UP for two­
particle intermediate states. We work with an 
arbitrary dimensionality of the momentum space 
for the reasons discussed in Sec. 2. When the dimen­
sionality is sufficiently high, our choice of independ­
ent invariants for the (i ~ j) particle amplitude 
becomes independent of the dimension and the 
previous prescription is changed to 

W 2 = (kl + k2 + ... ki )2 
(i+l)(i-2)/2 other "ingoing invariants," i > 3, 

(j+1)(j-2)/2 other "outgoing invariants," j > 3, 
(i - 1)(j - 1) invariants specifying the relative 

orientations of the "ingoing" and "outgoing" 
configurations. 

The total is tN(N - 3). 
We now consider the amplitude, for fixed and 

physical values of the ingoing and outgoing in­
variants as an analytic function defined on the under­
lying manifold of the rotation group Rr of the 
r[ = (0' - l)]-dimensional Euclidean space. Con­
sider a complete set of unitary irreducible repre­
sentations of this group, denoted by D(a)(P), P ERr, 
satisfying the usual orthogonality and completeness 
relations 

O(al)(a.) Omlms Omt'ms' 

d(a') 

o < m, m' < d(a) - 1 (A2) 

in which d is the (finite) dimension of the representa­
tion and dp is the normalized invariant measure on 
the group manifold. The symbol (a) denotes a set 
of [r/2] numbers specifying the irreducible repre­
sentation. 26 The completeness relation can be ex­
pressed as 

L: d(a) D7'~i'(PI) Dr:)·m'(P2) = O(PI' P2), (A3) 
(a) 

in which O(PI' P2) is the invariant 0 function of two 
elements of the group satisfying O(PI' P2) = 0 if 
PI F P2 and f 0, dPI O(PI' P2) = 1 (interpreted as 
Schwartz distribution equations). The group prop­
erty is expressed in 

d(a)-l 

D(~i' (Pa) = L: D(~i" (P2) D(~; ,m' (PI) Pa = P2PI' 
m"-O 

(A4) 

A convenient parametrization of the group, the 
Euler angle parametrization, is defined by the follow­
ing factorization of a group element into elementary 
rotations 

P = TI2(aI2)T23({323)TI2({312)Takl'a4)T2a('Y23) •.. T(T-OT 

• (Jl(T-Or) ••• T2a~2a)TI2(JlI2)' (A5) 
o ::;{323' etc., ::; 7r. 

T".(O) is the rotation x ~ x', defined by 

[

COS 0 

sin 0 
-sin OJ [x i [x'J 

cos 0 x:J = x~ for r F p, q 

and Xr = x: 

2& F. D. Murnaghan The Theory of Group Repreaentations 
(Johns Hopkins Press, Baltimore, Maryland, 1938). 
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of the T-dimensional vector x. The invariant measure 
in this case can be calculated by standard methods26 

to give 

dp = 01 s,t
1 

da l2(Sin (323 d{323 d(312) 

. (sin2 1'34 d'Y34 sin 1'23 d'Y23 d'Y12)(Sin3 1'45 ... dJ.!.12) , 

(A6) 

where S, is the "content" of the E-dimensional sphere 
of unit radius: SI = 271", etc. Using fundamental 
theorems for functions defined on the rotation 
groups, 27.28 we assert the existence of an expansion 
of the (i ~ j) particle amplitude in terms of element 
of these representations, which is uniformly con­
vergent on any compact subset of the group mani­
fold on which the amplitude is holomorphic and 
except for singularities associated with the particular 
parametrization used. This is our generalized partial 
wave expansion. 

Consider next a typical integration over inter­
mediate states of the form 

J ... J 11 {d~q.8(q~) 5(q,q, - m2)} 

. 5(Ol«W, 0) - ql - q2 - ••• - q'P)' (A7) 

where we leave understood the two amplitudes 
normally appearing in the integrand, as the integra­
tion over the 5 functions has only the effect of 
picking out mass- and energy-shell values of these 
amplitudes. 

A change of variables of the form 

d~q, ~ Iq,I~-3 (4W)-1 d(q,)2 d(A,)2 dn" (AS) 

where dQ. is an element of solid angle in T-dimensional 
momentum space, Iq,l the T-momentum and A, = 
(W,O) - q. = ql + q2 + ... + q'-l + qo+l + ... + q,,, 
gives 

(4Wy-l J ... J dn1 .•. dQ.'P-l d(Al)2 ... d(A'P_l)2 

. (Iqll ... Iq.,,_d)"-a 

. 5(~l«(W, 0) - ql - ... - q'P_l)2 - mD, (A9) 

after carrying out some of the 5-function integra­
tions. A further change of variables is then made: 

dQ.1 ... dQ.'P-l ~ dQ.1 dQ. 12 dQ.123 ... dQ.12"'('P-1l, (AlO) 

26 E. P. Wigner, Group Theory and its Application to the 
Quantum Theory of Atomic Spectra (Academic Press Inc., 
New York, 1959). 

27 C. Chevalley, Theory of Lie Groups I (Princeton Uni­
versity Press, Princeton, New Jersey, 1948). 

28 L. Pontrjagin, Topological Groups (Princeton University 
Press, Princeton, New Jersey, 1939). 

in which the integration over unit spheres in momen­
tum space, all expressed initially in a coordinate 
system fixed with respect to, say, the orientation 
of the ingoing particle configuration, are progres­
sively made dependent on the directions of the 
intermediate particles in some specified order. For 
example, dn12a is an element of solid angle of the 
direction of q3, measured in a coordinate system 
fixed with respect to the orientations of ql and q2 
and a further set of orthogonal vectors independent 
of the orientations of the remaining q,. In a suitable 
spherical coordinate system, this element of solid 
angle is 

dnl23 = sinT
-
1 01 dOl sinT

-
2 O2 d02 sinT

-
a Aa 

(All) 

where the components of tia in Cartesian coordinates 
are 

cos (}1 

sin 01 cos (}2 

sin (}1 sin (}2 cos Aa (A12) 

In (All) we have now two types of angles: (}l and 
O2 are angles defined entirely by the relative orienta­
tion of the intermediate particle momenta Ql' Q2, 

and Qa, whereas the angles {A} form part of an 
Euler angle parametrization of a rotation from a 
coordinate system fixed with respect to the incoming 
configuration of C.m. momenta into one fixed with 
respect to the intermediate configuration. The in­
tegrations over directions in the momentum spaces 
of intermediate particles can thus be replaced by 
the product of two forms 

1'-1 

II dn, -~ dpi dJ.!.. (A13) 
,=1 

Here dpl is an invariant measure of the T-dimensional 
rotation group, formed from the angles A and, if 
necessary, a redundant measure involving fictitious 
intermediate particle to take into account an excess 
of T over (p - 1). The second factor dJ.!. is part 
of the usual measure of phase space of the p-particle 
intermediate state, the remainder being d(Al)2 ... 
d(A'P_I)2, restricted by the 5 function in (A9). 

Consider first the factor dPI, which refers to 
rotations between coordinate systems fixed in the 
ingoing and intermediate particle configurations. 
When we project out partial-wave amplitudes from 
(A7) we find that each projection can be expressed 
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in a form involving only integration over inter­
mediate phase space, as demonstrated below. 

Partial-wave projection is carried out by multi­
plication with a D(~)' (Pa) and integration over the 
group manifold of measure dpa. We can now change 
the variables of integration in the manner dp1 dpa ~ 
dp1 dP2, because Pa, a rotation between ingoing and 
outgoing configurations, can be factorized into P1P2. 
a product of two rotations between ingoing and 
intermediate and between intermediate and out­
going configurations, respectively. On substituting 
the representation equation (A4) , both integrations 
may be performed immediately to project out partial 
wave amplitudes from the suppressed amplitudes 
in the integrand. Apart from a numerical factor, 
the partial-wave projection of the integral then 
becomes, on restoring the suppressed amplitudes 

d(.)-1 J J m4:
o 

.•• dx{amplitudeforp~jprocess}(~)" 

. {amplitude for i ~ p process}(~;·m'. (A14) 

We now require two properties of the intermediate 
phase space; (i) its element of volume dx as defined 
above and (ii) the limits of the region of integration. 
The latter is determined by the requirements that 
momenta be positive real in magnitude, angles be 
real and that the condition imposed by the remaining 
a-function in (A9) holds. It is possible to give 
simple formulas only in the lowest particle number 
cases, e.g., for p = 3, dimensionality ;:::: 3, equal 
mass case, phase space is given by 

S12 + Sla + S2a = W
2 + 3m

2
, 

S12 = (Aa)2 ;:::: 4m2
, etc., 

and for dimensionality 3 only: dx = dS 12 ds23 • 

(AlS) 

APPENDIX B: UNITARITY CONDITIONS FOR 
SOME UNSTABLE PARTICLE CUTS. 

Using the notation of Sec. 3, the interpolating 
unitarity condition for the four-nucleon scattering 
amplitude involving only four-nucleon intermediate 
states in the main channel, is given by 

I = (I -c@_LS-L:0:+~*) 

. (l+L8+LM+L:JSZ]:+~~). 
(Bl) 

The generalisation of the procedure used in Sec. 3 
to extract an equation representable in Fredholm 
form follows the sequence: 

L@c L§ 

+ fO+L~+~=~(I+L+ilIt(~~}, (B2) 

in which all connected diagrams build up entirely 
from two-nucleon V* amplitudes are eliminated, 

L©= L@+{(I+L0+L@t+fRf 
- (I+L~ +~~r -L=lliJ::}, (B3) 

in which all connected diagrams involving the two­
nucleon V* amplitudes and at least one three­
particle D", amplitude are eliminated. A "l" sign 
crossing three particle lines forbids all products of 
the type 

±rlf::::::~ AND O::::~ ::R-....JF ...... R......Jt= • 

The next steps are 

and 

~vlc;;~= (J+L~+Lffi+~*) ~ 

= (1+ L=M=+L@:+i*) @ 

+ {J- (I +LW + L=0: +~*) 

.(I -L:[l): - L~ + ~*H 

~= (J+L:QJ:+L§+~3) g} 

. (1+L:0: + L@+ 1'*), 

(B3a) 

(B4) 

(BS) 

in which the two- and three-particle terms of the 
minor energy channels are eliminated. 

From these definitions and (Bl) we deduce the 
following pure four-particle equation 

8 = m + L~vlc::B (B6) 

in analogy to (3.33). This equation can now be 
treated by the Fredholm methods of Sec. 3.3 so as 
to demonstrate the existence of the continuations 
to unstable particle thresholds at W2 = (a + 2m1)2 
and (2a)2. 

In order to derive the unitarity conditions, it is 
simpler to return to the original expression (Bl) and 
use the formal techniques of Sec. 3.4. 
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By partial summation, it can be shown that 

(I +L8·L :lQ}: + L:0l+~*) 
-I 

(I-L@-L:0: L:@:·f~) (B7) 
-1 

(I-L§ -L ~IL L:@}.nlBl . 
Consider first the (a + 2ml)2 threshold branch point. 
We follow the paths of continuation A and B 
depicted in Fig. 6. These paths are consistent with 
the linear relations between the invariants in the 
way the various singularities are bypassed, but the 
choice is not unique for given paths in the W 2 plane. 
However, the other possible choices all give appro­
priately different results and so we consider only this 
particular one. 

We must now consider what happens to the four­
particle intermediate phase space contour. This is 
a complicated surface in a five-dimensional space 
(cf. Appendix A), but the integrations in three of 
the variables can be carried out without introducing 
the singularities of interest as we need only consider 
a term containing poles in only say the 8 12 and 884 

planes at once, as in Fig. 7. 
The remaining part of the phase space takes the 

form (shaded) in Fig. 8, which has some freedom 
of deformation, the three edges being tied down to 

EF: EG: FG: 

(B8) 

and the three corners to 

E: F: G: 

812 = 4m2 
812 = 4m2 

812 = (W - 2m)2 

834 = 4m
2 

834 = (W - 2mY 834 = 4m2
• 

As in Eq. (6.5), the integrand possesses square-root 
branch points on the edges of the region of integra­
tion, which arise from the integrations over the three 
other independent variables, these having been 

"'-PLANE SI23· P:... AN E. 
(. S, lIJiJ 

(3"'J' 

cL~ \~ 
(o..2 .. :f (o.+.",i 

~ 1
2\\ia. '0" 2 " 

3 .' • B • I.' 

5"-1 5,.' j FOR OUT-STATES: 

5". PLANES S .. , PLANES O,2,J.4.) -+ 0;2: J: '-') 
5:,.," 5, ... · 

FIG. 6, Paths of continuation. 

-~-•... .-..... -.. ~. .-

FIG. 7. Unitarity diagram giving rise to unstable particle cuts. 

carried out first. As before, going once round one 
of these branch points just changes the sign of the 
integrand. We see that the (a + 2ml)2 branch 
point occurs when the corners F and G hit the poles 
at 812 = a2 and 8 34 = a2

• In each term of the formal 
expansion of the final expression in (B7) the dis­
continuity arising from following the two paths A 
and B, which forces the contour opposite ways round 
the poles, can be evaluated and summed to give 

[8} [ill} [:M:H[*J 

-~(~k~~)B 
-1 

+ (I-L§-LID-L~+=)A 
-1 

.):>,,<Jt(I -L0-L§-LW+ i:l@f) 
-- =L:J: -- -- 2WB 

(BlO) 

in which square brackets [ ... ] denote a discon­
tinuity and the suffices A and B denote the path 
on which the inverses are evaluated. 

Using (B7) again on (BlO) and noticing that the 
disconnected parts cancel, we get 

@= hl+L~+{Lg 

+L~+L'~+L'~ 

+L~+'L~+L~ 
(Bll) 

being interpreted as follows: the terms in curly 
brackets are present only if consistent with the 
original paths of continuation chosen (Fig. 6), the 
amplitudes involving unstable particles are obtained 

FIG. 8. Four-particle phase space. 
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from the pole-residue definition [cf. (3.52)], which 
takes the form 

(B12) 

on applying to (B7). The logarithmic nature of this 
three-particle branch point can be obtained directly 
from the Fredholm solutions by a more detailed 
analysis of the coinciding poles and integration 
contour. 

On using the pole-residue definition for amplitudes 
involving unstable particles, we find the following 
prescription for its expansion following from the 
unitarity formulas: write down the S-matrix element 
as a sum of V amplitudes, contract with a sufficient 
number of the vertex constants 

Ly ........ . (B12a) 

on either side and pick out the connected terms so 
produced. For example, we have 

.fV1= = tc(~ .... ot:) 
"'-L:.J= l v·-ot:: 

(B13) 

(B14) 

We next treat the W2 = (2a)2 singularities. It is 
not difficult to visualise the possible motions and 
deformations of the contour of integration in Fig. 8. 
This can be used to show that the W 2 = (2a)2 
singularity arises from the coincidence of the leading 
edge of the contour on W = 812 + 8!4 with both 
poles simultaneously. This occurs whichever way we 
go round the W 2 = (a + 2m1? branch point initially, 
and so we expect branch points on both sheets. 

Taking case (a) first (see Fig. 9) and the path A +, 

w"-PLANE 

~~ 
(4+2;.J 

FIG. 9. Paths of continuation for the singularities at 
W2 = (2a)2. 

the contour of integration lies "above" all the poles 
right up to the endpoint. For the path A -, however, 
though the corners F and G pass above the poles 
as we increase W, we require the contour to pass 
below the point 812 = 8 34 = a2

• It is necessary to 
slit the contour slightly in order to do this, and 
then the essential difference between the two con­
tours is a bicylinder enclosing both poles. For the 
case (b) we have a similar construction. The form 
of the residues themselves is obtained as for (BlO). 
The coefficient attached to a 

(B14a) 

factor in any term of the expansion of (B10) is !i2
, 

of which _!i2 arises from that term in (B10) itself 
and i 2 from the appropriate term in the product 
[cf. (3.13)] 

L(~)'L(~}. (B14b) 

The discontinuity between the values reached 
along the paths A + and A - is 

[8+ :0:+ ::@::+ ~*) .. 
~(I -L@-l:[Q}:-L 4@+~*)~~ 

·(t::~ (I -L@-L=@1-L:l@t: +~*h-. 

(B15) 

Treating in the same way as (BlO), we get finally 

+ L' :::fV:l .... -o:;: + .. :::o ..... ~ 
~ .... -o:: ::;::o····ttF • 

Similarly for the B+ and B- paths, we get 

M= Q+L~::::·E~ 
+ r=iVJ···o:: =t.':'..U .. -0::: 

(B16) 

(B17) 

Notice that in evaluating the double residue to 
obtain (B15), a factor 2 appears which cancels with 
the factor ! in the coefficient discussed above. A 
check on our result is obtained by carrying out our 
continuation procedure on the two-nucleon + un­
stable particle cuts in the various amplitudes using 
the unitarity relations as derived from (Bll). 
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Sets of postulates for B-matrix theories are given and used to construct potentially complete 
dynamical theories for scattering of strongly interacting particles, based essentially on the unitarity 
relations and on-mass-shell analyticity of scattering amplitudes. In one formulation, the unitarity 
relations for stable particles are used to derive the corresponding relations for cuts associated with 
unstable particle states. In a second formulation, an attempt is made to treat stable and unstable 
particles on a more equal footing. Crossing symmetries and decomposition laws for single-particle 
poles appear as consequences of the postulates. 

ON the basis of results obtained in the first paper 
of this series (hereafter denoted by I), we 

attempt below to construct sets of axioms for com­
plete dynamical theories of strongly interacting par­
ticles. For the reasons stated in the introduction 
to I, we wish to do this entirely in terms of on-mass­
shell analyticity. This immediately plunges us into 
all the usual difficulties associated with unphysical 
regions, but which we regard as not insuperable by 
on-mass-shell methods. 

The first step is to obtain a general prescription 
for obtaining all the singularities of scattering ampli­
tudes which are allowed by the maximal analyticity 
postulate. The singularities occurring in the physical 
regions we have already obtained directly from the 
unitarity relations. The most important unphysical 
region singularities are the one-particle poles of 
two-particle scattering amplitudes, whose existence 
can be proved in many cases from field theory, 
making essential use of off-mass-shell continua­
tions. I

•
2 In order to obtain these singularities in an 

on-mass-shell theory, we are forced to start from 
physical region unitarity and invert the methods 
of Sec. 3.3 of I in order to deduce the existence 
of single-particle poles from the discontinuities given 
by physical region unitarity across certain cuts. We 
need one additional postulate of the type mentioned 
at the end of Sec. 3 of I, i.e., we require the nucleon + 
meson branch point to be absent on the particular 
unphysical sheet discussed there and on correspond­
ing sheets of the other amplitudes with three-nucleon 
branch points (cf. Fig. 4 of I). We now claim that 
the existence of the nucleon + meson cut on the 
physical sheet with discontinuity given by the usual 
unitarity condition (3.6a) of I, implies uniquely the 

1 H. J. Bremmermann, R. Oehme, and J. G. Taylor, 
Phys. Rev. 109,2178 (1958). 

2 J. Gunson and J. G. Taylor, Nuovo Cimento IS, 806 
(1961). 

FIG. 1. Paths of continuation for the meson-nucleon cut on 
physical and unphysical sheets. 

existence of the pole terms to be expected if the 
meson is to be regarded as a bound state of two 
nucleons. 

1. PROOF OF THE EXISTENCE OF 
BOUND STATE POLES. 

We start with the meson-nucleon scattering ampli­
tudes satisfying 

ill= :0:+ v~ (1) 

ill = ill+ l:@(I-l@-lmf:@]: 
_ ::[Q]::+i.:@J:(I-L.@-L@r:@]:, (2) 

as obtained from (3.la, b) and (3.2b) of 1. Following 
the paths PI and P 2 of Fig. 1 (cf. Fig. 4 of I) and 
using the postulated nonexistence of the two-particle 
cut on the three-particle unphysical sheet, we deduce 
the expression 

-I 

lID] = lID(I-LID-L~) . 
.~ 

PATH 1\ CONTINUATION 

• ([~)I(I-LID-L~)I~ (3) 
~ 

PATH I!. CONTINUATION 

for the difference between the values attained by 
following paths PI and P 2 • But the lhs expression 
in (3) is just the discontinuity 

(3a) 

845 
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across the two-particle cut of the meson-nucleon 
scattering amplitude, and so we perform the iden­
tification 

Let us consider this expression in each partial wave 
separately. In order for the rhs to be nonzero, there 
must be some singularity present in the two-nucleon 
scattering amplitude so as to give rise to the dis­
continuity term in (4). We also know certain further 
properties of the Ihs of (4), (i) it is the discontinuity 
across a square-root type branch point (elastic thres­
hold), (ii) near the threshold q2 = W 2 

- (ml +m2)2 = 0, 
the Ath partial wave of the discontinuity behaves 
like cq4A+\ c ~ 0 (one factor q2A of this behavior 
arises from the external particle states and is ir­
relevant for our discussion). 

We now claim that the only singularity in the 
two-nucleon scattering amplitude which can give 
this behavior is an S-wave pole at W2 

= m;, with 
an appropriate residue. To see this, we first consider 
in more detail the integration over three-particle 
intermediate phase space (cf. Sec. 3.3 of I). This is 
of the form 

where 

a±(sI2, W2) 

(5) 

HW2 + 3m~ - S12) ± ! {[S12 - (W + ml)2] 

. [S12 - (W - m1?](sI2 - 4mi)s~~} t, 

in which we suppose that S12 is the energy variable 
for the two-nucleon amplitude which contains our 
conjectured singularity. The integration over the S13 

variable clearly produces a function which possesses 
square-root branch points on S12 = (W + m)2 and 
8 12 = (W - m/. Moreover, the function is simply 
changed in sign if we encircle one of these branch 
points, as the only effect of this encirclement is to 
reverse the direction of integration in the S13 variable 
between the same endpoints. The S12 integration can 
thus be replaced by a contour integral which en­
circles the S12 = (W - m 1)2 branch point, as in 
Fig. 2. The method of generation of the square-root 

~ ... _ 5" ~ 0.& (POLE) 
('II ->n.)' 

FIG. 2. This figure shows how the phase-space integration 
contour is pinched, producing a two-particle threshold. 

two-particle threshold branch point from a pole at, 
say, S12 = a2, is now clear, using the methods of 
continuation used extensively for perturbation theory 
amplitudes. Conversely, given the square-root branch 
point at W2 = (ml + m2)2, we see that this must 
arise from an isolated singularity at S12 = m~. This 
singularity cannot have a cut attached to it, as this 
would not give a square-root branch point. Further­
more, it cannot contain any singular component 
other than a simple pole, as this would give an un­
bounded value to the rhs of (4) at the threshold 
W 2 = (ml + m2)2. We thus deduce the following 
form for the singularity 

(6) 

where the residue l(cos 8) may yet depend on the 
cm scattering angle cosine invariant. Expressing this 
as a Legendre series (we assume that the analytic 
properties allow this) 

1.. { g~ 2 + giP1(cos f) + ... }, (7) 
271" S12 - m 2 812 - m2 

we see that the rhs of (4) reduces to a sum of expres­
sions, one for each integer s, like 

(8) 

where the patterned line represents an intermediate 
particle of spin S and mass m2 , associated with the 
term g!p.(cos 8)/271"(S12 - m~). However, such a 
term as (8) can be shown to possess a threshold 
momentum dependence expressed as a function of 
the total angular momentum i, of the form q2a(i)+1 

(neglecting the q dependence arising from the ex­
ternal states), with aU) of the form Ii - si. The 
rhs of (4) has the corresponding momentum depend­
ence factor q2i+1. Hence inconsistency rules out all 
terms in (6) with s ?: 1 and we are left with the 
relation 

(9) 

for the discontinuity across the pole in the two­
nucleon amplitude. Clearly, this uniqueness property 
still holds if we start with a meson of nonzero spin. 
Comparison of (9) and (4) now gives us the value 
of g~, from 

setting D == V in the two-particle region. As each 
partial-wave component of these expressions can be 
expressed as the product of two partial-wave ampli­
tudes, the most general factorization of the equation 
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gives 

(11) 

up to an ambiguity of sign, which can be absorbed 
into the arbitrary sign factor of go (we make essential 
use of the property that V and V* are continuations 
of each other in eliminating constant complex phase 
factors). Note that go is real in view of the reality 
of the two-nucleon amplitude. 

From (11) and 

:[I}: = ::@}(I-L§"-L::fIAJ*f , (12) 

we obtain the factorization property 

RESIDUE AT(..fE1:~= La ~ 
POLE SI2·~ '-=-J-i} ~ 

=L~. 
(13) 

This demonstrates that the two-particle scattering 
amplitude for meson on nucleon is itself in its 
entirety contained in the production amplitude 
(meson + nucleon) ~ (three nucleons) as a factor 
of the residue at an appropriate meson pole. The 
maximal analyticity principle ensures this and hence 
that the complete singularity structure of the two­
particle amplitude is determined by that of the 
higher amplitude. 

2. THE UNPHYSICAL REGION 
DECOMPOSITION LAW 

The above factorization property forms the natural 
extension of the physical region decomposition law 
given by the factorization of residues at single 
particle poles in the physical regions [cf. Eq. (5.6) 
of IJ. We show in this subsection that this unphysical 
region decomposition law is almost certainly true 
in general, on the basis of our postulates, and thus 
forms a powerful tool for determining singularity 
structure. The physical necessity of the single-par­
ticle decomposition law is quite clear, as direct scat­
tering experiments can be made arbitrarily close to 
the single-particle poles, in which case we would 
expect that the major contributions to a many-par­
ticle scattering process would arise from two succes­
sive lower-order scattering process connected by a 
real stable intermediate particle state, which may 
exist for macroscopic distances and times. It is 
physically reasonable to suppose that such a factor­
ization property is approximately true for poles 
which are very close to the physical region, and 
indeed the maximal analyticity principle now shows 
that the factorization property is still exact at the 
pole itself. 

The general decomposition law is deduced from 
a more complete form of the bound-state postulate. 
This may be regarded as in some sense the equivalent 
of a postulate of the existence of the corresponding 
three-particle interaction in a Lagrangian field 
theory. In effect, we postulate the absence of all 
threshold singularities involving mesons on the un­
physical sheet of any amplitude attained by en­
circling the branch points for associated thresholds 
for which one or more of the mesons are replaced 
by one or more nucleon pairs. We cannot at present 
give a completely satisfactory proof owing to the 
many complications of overlapping cuts in the gen­
eral case. 

Working with a quite general amplitude, we need 
to consider only meson-nucleon pairs and meson­
meson pairs of either both incoming or both outgoing 
particles. Taking the first case, among the various 
unitarity conditions, we always find an expression 
for the discontinuity across a three-particle cut of 
the form 

~. (14) 

Using the analysis of Sec. 3 of I as adapted to this 
case, we obtain the analog of (10): 

~=~~ 

{ .~~ IF} + l. U'£G2'cib ALLOWED • 

(15) 

From (11) and the unitarity conditions, we obtain 
the analog of (13): 

RESIDUE AT{ £B = ~ 
POLE s, ........ ~J ~. (16) 

The meson-meson pairs can be treated in a similar 
way via the meson + two-nucleon intermediate 
states. This is sufficient to obtain the decomposition 
law for every case in which one of the factors is 
the three-particle vertex. 

We again stress that this is only an outline proof. 
Weare accepting its conclusions only because it 
works in the simpler cases and we can see no means 
by which it can fail for the more complicated cases. 
Indeed, we might take the decomposition law as 
a fundamental postulate, if it were possible to show 
the existence of the unphysical region poles more 
directly. 

3. CROSSING SYMMETRY AND THE 
DETERMINATION OF SINGULARITY STRUCTURE. 

Up to this point in the paper we have made no 
use of the crossing symmetry properties of scattering 
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amplitudes. In field theory, these properties appear 
as direct consequences of the basic postulates in, 
for example, the proof of dispersion relations.3 Cor­
respondingly, we would like to deduce these prop­
erties from our postulates. We start with examples 
showing the possibility of such a deduction. 

The set of terms 

(17) 

contribute to the physical region unitarity condition 
for the four-nucleon scattering amplitude if W 2 > 
(4m i + m2/' If we label the particles and add 
arrows to denote the direction of positive energy, 
then the diagrams 

(18) 

represent the discontinuities across physical region 
poles on the physical side of the cuts. However, 
they are essentially the same pole as they both lie 
on the surface 

(Pi + P2 - ps - P6)2 = m~, (19) 

and the principle of maximal analyticity thus re­
quires these terms to be analytic continuations of 
each other if the continuation is at all possible. This 
would imply that, apart from an irrelevant phase 
factor, the component amplitudes are indeed con­
tinuations of each other, as required by the crossing 
symmetry principle. It is clear that by this mech­
anism any two physical amplitudes which differ by 
interchange of some of the ingoing and outpoing 
particles can be connected by a sequence of terms 
like (17) in which they appear and from which the 
crossing property can be deduced by an application 
of the maximal analyticity principle to physical 
region poles. 

We assume that all these continuations of residues 
are indeed possible, so that crossing symmetry fol­
lows from our postulates. Of course, it is not neces­
sary to assume that all these continuations are valid, 
as they are not independent. Another approach is 
to establish that the residues at the poles corre­
sponding to the diagrams 

(20) 

are the same. The pole term (20b) (crossed nucleon 
pole) is obtained at the end of this subsection, 

3 This is clearly demonstrated in the review by J. D. 
Jackson in Dispersion Relations, edited by G. R. Screaton 
(Oliver and Boyd, Edinburgh, 1961). 

whereas the first one follows from an application 
of the bound state postulate (cf. Sec. 2) to a nucleon­
meson pair coupled with a single nucleon. 

This latter postulate must be made simultaneously 
with the nucleon-pair-meson bound-state postulate 
if we are not to contradict elementary crossing prop­
erties. As we indicate below, the complete singularity 
structure of the scattering amplitudes as generated 
by these poles is that obtained by considering the 
singularities of a complete set of perturbation theory 
graphs (extended to include unstable particle lines). 
This spectrum of discontinuities across the complete 
set of perturbation theory singularities is manifestly 
crossing symmetric, and so the amplitudes them­
selves must be, insofar as they are determined by 
their discontinuities. 

Our prescription for obtaining the singularity 
structure is to take the complete set of diagrams 
of the perturbation theory type which are allowed 
by selection rules (note that our diagrams always 
represent a unitarity discontinuity if they involve 
two or more amplitudes, and are not Feynman 
diagrams). For our purposes, we include all diagrams 
for which unstable particle lines are allowed and 
so the total amplitude cannot be regarded as a 
formal sum of all these diagrams. In addition, at 
all four and higher particle number vertices, we 
always write in the complete scattering amplitude 
appropriate to the number of lines meeting. To take 
an example, the discontinuity of the triangle graph, 4 

,5 

which appears as 

(21) 

in our notation occurs in the meson-nucleon elastic 
scattering amplitude. We now claim that the sing­
ularity structure associated with this graph and all 
other possible ones is present in the complete meson­
nucleon scattering amplitude. The main difficulty 
is in determining the sheet structure of these dis­
continuities. 

Using the decomposition law, we can state that 
this discontinuity is given in terms of the residue 

~-+~ (22) 

of suitable poles in the three-particles scattering 
amplitude. But we know that the latter unitarity 
graph can be continued to the physical region, where 
its discontinuity appears as a direct consequence of 

'R. Karplus, C. M. Sommerfeld, and F. H. Wichmann, 
Phys. Rev. 111, 1187 (1958). 

6 R. Cutkosky, Rev. Mod. Phys. 33, 448, (1961). Also 
J. Math. Phys. 1, 429, (1960). 
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unitarity (cf. 3.30 of I). Thus the principle of max­
imal analyticity verifies the presence of the sing­
ularity associated with (21) and moreover gives the 
sheets on which it occurs or is absent. We may 
follow the steps of the process in the diagram 

For the case 823 = 845, perturbation theory calcula­
tions give the location of the anomalous threshold 
term branch point at 

814 = 4ma1 - (1 - 823/2mD 2
], (24) 

and on continuing to the meson pole at 8 23 = 845 = m~, 
we see that the branch point stays on the physical 
sheet or moves onto the unphysical sheet depending 
on whether m~ > 2mi or < 2mi. This gives the usual 
condition for the presence or absence of the appro­
priate anomalous threshold on the physical sheet 
of the meson-nucleon scattering amplitude. This 
process is in some ways similar to off-mass-shell 
continuation methods of obtaining the same result.6 

To generalize the argument, we claim that the 
discontinuity represented by any graph can be 
embedded in some amplitude involving a larger 
number of external particles, such that the cor­
responding singularities enter the physical region of 
that higher-order process. Physical region unitarity 
and the decomposition law then confirm the existence 
of the singularity in the lower-order amplitude even 
if it lies entirely in unphysical regions, and in 
principle completely determine the sheet or sheets 
on which it lies. While it is clear that any graph 
can be built up by repeated applications of the 
singularity mUltiplication process of Part IlIon 
certain elementary diagrams, there still remains the 
possibility of the presence of other singularities which 
cannot be attributed to discontinuities given by any 
of the perturbation-theory graphs. As we have not 
yet discovered any means by which these extra 
singularities may be generated and still be in accord 
with our analyticity postulates, we at present omit 
them and regard the above specification as complete 
Similar considerations have been given by Polking­
horne and Zwanziger (see Introduction to I). 

To conclude this subsection, we now derive the 
crossed nucleon pole of (20a) by the steps [cf. (23)], 

6 S. Mandelstam, Phys. Rev. Letters 4,84, (1960). 

t~} DECOMPOSITION LAW. ~ 

,=DLF, AT 5,., '" s" = rn.; ! 
1 '--1,';l--~ 
~~! .~s, (25) 

'\ '~" 
~-~'" 't1 56· 

4. ALTERNATIVE FORMS OF THE 
BASIC POSTULATES. 

The program for constructing a complete on-mass­
shell theory of the S matrix can be based on the 
following postulates: 

(i) the postulate of the existence of the usual 
spaces of Lorentz covariant in- and out-states in­
volving the stable particles of the theory and the 
the existence of a unitary S matrix connecting them 
(see Sec. 2 of I); 

(ii) the maximal analyticity postulate (see Secs. 1 
and 2 of I) for the on-mass-shell continuations of 
the scattering amplitudes and the analyticity uni­
tarity connection (see the end of Sec. 2.2 and 
Sec. 3.3 of I); 

(iii) the bound-state postulate, which in our pre­
sentation takes the form of requiring the absence 
of certain threshold singularities on unphysical 
sheets whenever the bound-state condition is satisfied 
(see the second paragraph of the introduction and 
Sec. 2). In accordance with present trends, we may 
regard any particle as a bound state of any set of 
particles with the same over-all quantum numbers. 
This condition makes the bound-state postUlate more 
precise, but can be readily modified if it is required 
to take certain particles as "elementary." 

We have demonstrated possible ways for deducing 
the complete singularity structure and crossing sym­
metry properties, at least in principle, for all scat­
tering amplitudes and in terms of a few given 
coupling constants and masses. This is the basis 
on which we claim that, if we knew how to solve 
the resulting equations, the physical scattering 
amplitudes are given uniquely by the equations 
representing the analyticity and unitarity condi­
tions. However, at present we cannot even write 
down a complete set of equations. 

Alternative formulations of the above three post­
ulates can no doubt be devised. In particular, it 
should be possible to construct them in such a way 
as to cause stable and unstable particles to enter 
on a more equal footing, in contrast with the above 
formulation. Presumably in such a formulation one 
must take the S matrix as a given entity independent 
of the existence of any in- and out-state spaces, 
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with the one-particle decomposition law taken as 
fundamental. Then all amplitudes appear as derived 
quantities in some over-all "universal" functional 
amplitude, being obtained by extracting a component 
which is a simultaneous singularity at several single­
particle poles 

DECOMPOSITION LAW",@ 
.~.~,~ --:-~ --+ n 

~. h. 

(26) 

This is depicted in (26), in which we define the 
n-point amplitude in terms of the coefficient of 
8(4) (k l + leI + ... + len) in the simultaneous residue 
at n single-particle poles. The required amplitude 
is extracted from the residue by removing a constant 
factor representing the rest of the "universal" ampli­
tude. Reasons for taking this factor as constant are 
given later in the section. We have not yet found 
a more satisfactory way of formulating these ideas, 
in particular the precise functional form of the 
"universal" amplitude, but considerations such as 
these seem inevitable when one abandons asymptotic 
states. For unstable particle and unphysical bound 
state poles, the energy-momentum vectors are com­
plex and so we must regard the residue as being 
observed from a neighboring region which lies in 
a physical region. A sufficiently high degree of 
accuracy in the knowledge of the function in the 
physical region enables one, on the basis of the 
analyticity principle, to separate out in principle just 
the pole contribution. This is precisely what is done 
in "polological" methods for measuring coupling 
constants.7 

The unitarity condition can now be formulated. 
There is now no expansion like (2.5) of I, but the 
equations obtained from it can be reinterpreted as 
the unique expression of the conservation of prob­
ability for a complete set of particle states. We are 
regarding the value of any point on the entire 
Riemann surface as in principle measureable, either 
"on the spot" in the case of a physical region or 
by extrapolation at other points. The class of analytic 
functions from which an extrapolation should be 
chosen must take due regard of the general analytic 
properties of scattering amplitudes, in order to avoid 
pathological cases of the type found by Dyson,8 in 
which infinite accuracy of measurement is required 

7 M. J. Moravcsik, review in Di8]Jer:sion Relations, edited 
by G. R. Screaton (Oliver and Boyd, Edmburgh, 1961), p. 117. 

8 K. Symanzik, in Lectures on Fi~ld Theory and t~e Many 
Body Problem, edited by E. R. Calanello (AcademlC Press 
Inc., New York), p. 90. 

in order to extrapolate with finite error to any un­
physical point whatsoever. 

For a general complex value of the total energy 
invariant for incoming particles, there appears to be 
no natural dichotomy of particle states into those 
that are "allowed" because there is sufficient c.m. 
energy available and those that are "not allowed." 
This contrasts with the real energy case. We there­
fore take any set of particle states (including un­
stable ones) as a "complete" set for a particular 
total energy and with this complete set apply the 
probability amplitUde interpretation and require con­
servation of probability. We may allow the "prob­
ability" to become complex away from the physical 
regions as long as it attains a physically reasonable 
value in the physical region itself. From a suitable 
formulation of this idea, it appears reasonable that 
we should be able to derive the interpolating type 
of unitarity condition discussed in Sec. 3.2 of 1. 
We have already shown that this latter set of equa­
tions is self-consistent, even when we include the 
unstable particle singularities. We simply interpret 
the various equations as connecting the values of 
the amplitude on different sheets, all of which are 
measurable quantities in the above sense. The phys­
ical region is then just a real domain on one of these 
sheets where "on the spot" measurements can be 
made and this is the sole reason for singling it out. 

It is apparent that the reason we obtained only 
stable particle states in the unitarity conditions was 
our insistence on using the spaces of asymptotic 
in- and out-states taken over from field theory. We 
consider that formulations of the type discussed 
above are more satisfactory than the earlier ones 
just because the need for these dubious asymptotic 
states is eliminated. Another possible reason for 
preferring it is that it forms a more natural setting 
for certain modifications of present relativistic quan­
tum theory to take into account a "fundamental 
length" or some other way of expressing the finite­
ness of the universe. In many ways, both directly 
from the commutation rules9 and indirectly through 
the unitarity conditions,IO it has been shown that 
there is no natural upper limit to the number of 
particles in a given state in conventional quantum 
theory (neither in the form of a sharp cutoff nor 
as a smoother one which inhibits states of sufficiently 
high energy, particle number, etc., without actually 

9 The infinite dimensionality of any representation of the 
boson commutation relations has been proved many times, 
e.g., see L. Garding and A. Wightman, Proc. Nat. Acad. Sci. 
U.S., 40, 622 (1954). 

10 O. W. Greenberg, J. Math. Phys. 3, 31 (1962). Also 
R. Acharya, Nuovo Cimento 27, 1151 (1963). 
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excluding them). We attribute this property in our 
formulation to the convention that the "rest of the 
universe" contribution in (26) is a constant factor. 
This expresses the idea that the rest of the universe 
"produces" and "accepts" any particles we wish to 
use in our experiments with an entirely uniform 
probability distribution. In other words, the prepara­
tion of a particle in a given state of charge, momen­
tum, etc., for use in a scattering experiment in no 
way affects our chances of being able, in principle, 
to prepare any other particle state for use in that 
experiment. Similar remarks apply to the outgoing 
particle states. This situation is found to be true 
to a very high degree of approximation in almost 
all of present-day elementary particle physics (except 
for gravitational physics), but we feel that it should 
not be applied at arbitrarily high values of the 
energy, momenta, angular momenta, etc., except as 
a simplifying approximation. Instead we propose 
that the unitarity conditions should be modified by 
requiring only conservation of probability jointly 
for both the components in the factorization (26), 
one of which represents our scattering experiment 
and the other one the rest of the universe. However, 
we know of no suitable formulation of this idea. 

In both conventional field theory and our un­
modified version of S-matrix theory it is in effect 
postulated that we can separate out a particular 
part of the universe for detailed study to an arb­
itrary degree of disconnection from events occurring 
in the rest of the universe. However, many people 
accept it as a "principle of impotence" that one 
cannot push this degree of disconnection arbitrarily 
far. This principle has been accepted from the start 
in Einsteinian gravitational theory, and this partly 

accounts for the widely held view that gravitational 
theory seems somewhat set apart from the rest of 
elementary particle physics. If the above proposed 
modification of quantum theory could be satisfac­
torily formulated, then the gravitational interaction 
would find a more natural place along with the other, 
stronger types of interaction, differing from the rest 
in that the interaction is so weak that the "few­
particle approximation," as we may term ordinary 
S-matrix theory, has only a small domain of ap­
plicability. 

5. RELATIONS WITH OFF-MASS­
SHELL THEORIES. 

As all physical measurements are made on the 
mass shell, no off-mass-shell quantity is measurable 
in the sense used in Sec. 4. However, it may still 
happen that there exist such continuations, which 
satisfy a generalized form of unitarity condition and 
the various symmetry properties, etc., but which are 
not now expected to be unique. This is in accordance 
with the non-uniqueness which occurs in the defini­
tion of a local interpolating field associated with a 
given S matrix.ll Indeed, if we could show that a 
particular off-mass-shell "continuation" satisfied 
enough of the properties of the generalized r func­
tions12 of field theory, then we could demonstrate 
the existence of a local field by using the equivalence 
theorems of Wightman.13 However, this problem is 
still a long way from final solution and is not treated 
in this paper. 

11 H. J. Borchers, Nuovo Cimento 15, 784 (1960). 
12 H. Araki, J. Math, Phys. 2, 163 (1961). 
13 A. Wightman, Phys. Rev. 101, 860, (1956). 
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The singularity structure of many-particle scattering amplitudes in momentum transfer variables 
is investigated in terms of the many-particle unitarity conditions. Cauchy-type kernels for analytic 
functions defined on complex rotation group in three dimensions are constructed and related to a 
theory of local representations of the rotation group, corresponding to complex angular momenta. 

I N Parts I and II of this series, we have studied 
singularities of scattering amplitudes whose loca­

tion depends only on the energy invariants for one 
particular channel, in particular the total energy W. 
By generalizing the treatment given in a previous 
paper, 1 we investigate below the implications that 
the many-particle unitarity relations hold for the 
structure of singularities whose locations depend on 
one or more of the momentum transfer variables 
for the chosen channel. For this purpose, we have 
found it convenient to construct a special Cauchy­
type reproducing kernel for holomorphic functions 
defined on the manifold of the group 0(3, C), re­
garded as a complex space of three (complex) dimen­
sions. In the original derivation of this kernel, there 
appeared incidentally certain formulas which had, 
at least locally, some of the structural properties 
of representations of the rotation group in three 
dimensions. These formulas have subsequently 
proved to be of importance in the complex angular 
momentum analysis of many-particle amplitudes and 
so a detailed mathematical treatment of certain basic 
properties is given in Sec. 2. Applications to scat­
tering theory will appear in later papers. 

1. CONTINUATION IN MOMENTUM TRANSFER 
VARIABLES 

As an example we consider a three-particle uni­
tarity term 

[@]= l~ (1) 

occurring in (3.36) of I, whose partial wave projec­
tion appears in (3.38). The total amplitude 

A(W·, ... , p) 

group manifold of the complex orthogonal group 
0(3, C) (or rather the component of this group 
which is connected with the identity element) except 
for certain sets of singularities. These must include 
at least the ones which intersect the physical region 
itself, i.e., the submanifold which forms the real 
rotation group. These comprise the single-particle 
pole and anomalous threshold terms introduced in 
Sec. (3.3) of I and further branch points at higher 
energies. 

In Sec. 2, there is constructed an invariant kernel 
function associated with a special type of closed 
hypercontour M in the manifold of 0(3, C) and 
possessing the reproducing property 

feR) = f M dS K(R, 8)1(S) (3) 

for any function 1 holomorphic in a neighborhood 
of the physical region. In order to apply this theorem, 
we must reintroduce the (-ie) addenda to the 
masses of the intermediate particles as in Sec. 2 of I, 
in order to produce a neighborhood of the physical 
region in which the functions are holomorphic. Let 
us now write the amplitudes occurring in the unitar­
ity integral (1) in this form, i.e., 

after omitting irrelevant variables and integrations 
over the intermediate phase space. G is the manifold 
of SO(3). Using (3) on Z alone, we get 

A(Ra) = L dRI f M dS2 K(RaR-;I, S2) Z(S2) X(Rl)' 

(5) 

= t f: f: A7,m'(w·, .. ·) ~7·m'(p) (2) Applying to both Z and X, we get 
i=O m--; m'=-i 

is, according to our postulates, analytic in p on the A(Ra) = f M dS, f M dS2H(Ra, SI, S2)Z(S2)X(Sl), 

1 J. Gunson and J. G. Taylor, Phys. Rev. 121, 343 (1961). (6) 

852 
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where 

H(Ra, S2' SI) = fa dRI fa dR 2 

. o(Ra, R 2R 1)K(R2, S2)K(R1 , SI)' (7) 

These formulas show how we may generalize the 
formula for multiplication of singularities 1 to the 
many-particle case. The most immediate result is 
that if Z(S2) and X(Sl) possess singularities on the 
sets { ,8, } and b j}, respectively, where ,8. and 'Y i 
are elements of the complex orthogonal group, then 
we find that the singularities of A (Ra) are among 
the points {,8,'Y;}. This result has also been obtained 
by Lardner.2 This formula reduces to Eq. (A7) of 
Ref. (1) in the two-particle scattering case. In con­
trast with the latter case, however, two singularities 
not intersecting the physical region can give rise 
to a multiplied singularity which intersects the phys­
ical region; in other words, the product of two non­
real rotations may be real. 

The nature of the multiplied singularities is de­
termined partly by those of the H-kernel function 
(7). An integral representation of this function is 
obtained by substituting the explicit expression (46) 
for the K kernels and integrating over the 0 function. 
We have not been able to integrate the resulting 
expression and so we use the technique of deformed 
contours of integration to analytically continue the 
function and to determine the singularities. For fixed 
Ra, we obtain three surfaces of poles which intersect 
on the three (complex)-dimensional manifold Ra = 
R2R l , square-root branching surfaces on z~ + z; + 
z; - 1 - 2Z IZ2Za = ° and logarithmic branch points 
on Zl = ±1, Z2 = ±1. The latter two types of 
singularity are present in the simpler kernela for the 
two-particle scattering case. 

For many purposes it is more convenient to use 
the invariants Za(J = cos (Ja(J, where (Ja(J is the angle 
between the c.m. momenta of particles a and ,8 in 
the initial and final states respectively, rather than 
the Euler angle invariants. In terms of the new 
invariants, the formulas for multiplication of sing­
ularities again takes a simple form. Consider any 
selection of six particles appearing in a unitarity 
integral 

~~;!!31iZEJ§+ . (8) 

The imposition of the three-dimensionality on mo­
mentum space requires that we restrict the variables 

2 R. Lardner, Nuovo Cimento 23, 323 (1962); 24, 763 
(1962). 

3 S. Mandelstam, Phys. Rev. 115, 1741 (1959). 

to lie on the variety described by the vanishing of 
the determinant 

1 Z12 Zla ZI4 

D(1234) (9) 

and likewise for D(1256) and D(3456). A three­
dimensional rotation R,. is determined uniquely by 
the requirement that the pair of C.m. momenta kl' k2 
be rotated until kl is parallel to ks and kl x k2 is 
parallel to ks x ke. In terms of this choice of coor­
dinates let the amplitude A possess a singularity 
at R~, for fixed Z12, ZS6, etc. In combination with 
a singularity of B at R" the previous results show 
that we may expect a singularity of the integral at 

R~ = Rm~ (10) 

in the coordinate system for which (kl' k 2) is rotated 
into (ka, k 4). Taking the simplest case in which 
there are poles at R~ and R, (note that these must 
lie on surfaces of poles, because of the continuity 
properties of singularities for functions of two or 
more complex variables), we then find the multiplied 
singularity in the form of a pole at the location 
given by 

D(1653) =D(1564) =D(2563) =D(2564) =0, (11) 

in which Zl5, Zl6, Z25, Z26, Zas, Z45, Za6, Z46 are set equal 
to the values given by R~, R,. The solution of each 
of these equations in general gives two sets of values 
for Z13, Z2a, Z14, Z24, but only one set of solutions is 
consistent with the requirement D(1234) = 0, except 
in certain special cases. In a similar manner the 
square-root branching surfaces appear on the sur­
faces described by the solutions of 

D(153) = ° and D(163) = 0, (12) 

etc., and logarithmic singularities on zfs = 0, etc. 
These singularities will be modified somewhat when 
integration over intermediate particle states is 
carried out. 

This method clearly produces the same results as 
the more usual methods when applied to perturba­
tion theory graphs such as the five-point loop graph.' 
The location of the singularities is determined in 
both methods essentially be the same conditions of 
internal lines being upon the mass shell and the 
momentum space being three-dimensional. The par­
ticular set of diagrams (3.29) in I which give phys-

• L. F. Cook and J. Tarski, J. Math. Phys. 3, 1 (1962). 
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ical-region thresholds form a closed set under 
multiplication of singularities as described above 
if we include the physical-region pole terms. This 
again shows that unitarity gives the physical region 
singularities consistently. 

2. LOCAL REPRESENTATIONS AND THE 
CONSTRUCTION OF CAUCHY KERNEL 

FUNCTIONS FOR THE ROTATION 
GROUP IN THREE DIMENSIONS. 

In this section, we associate with the rotation 
groups a set of mathematical constructions which 
we have termed "local representations" and which 
give a natural extension of the well-known global 
representations of the three-dimensional rotation 
group5 for j = 0, !, 1, I, ... to arbitrary complex 
values of j. Some of these representations are then 
used in the construction of a Cauchy kernel for func­
tions holomorphic in domains on the manifold of 
the complex rotation group in three dimensions. 

We first give a precise definition of a local rep­
resentation for an arbitrary Lie group, though this 
is not essential for the rest of the section and can 
be omitted by readers unfamiliar with the term­
inology. It is known that with any topological group 
there are associated many local groups which are 
locally isomorphic with it. The abstract definition 
of a local group is given by Pontrjagin6 and Cohn,7 
but as we are interested only in Lie groups, we may 
replace the usual concept by one which is more 
restrictive. This we do by making the local group 
also a branched covering spaces of the underlying 
manifold of the group. 

Definition. A branched covering local Lie group 
(BCLLG) over a connected Lie group G is a quad­
ruple (X, r, G, H) in which 

(i) X is a connected analytic manifold; 
(ii) H is an analytic submanifold of G not con­

taining the identity and for which H- I = H, and 
G - H is dense in G; 

(iii) r : X ~ G is a projection of X into G which 
is locally analytic; 

(iv) there is in X a binary relation (x, y) ~ xy, 
taking values in X and a unitary relation x ~ X-I 

also taking values in X which are defined for every 
x, y E X for which all of rex), r(y), r(x)r(y) EE H 

Ii A. R. Edmonds, Angular Momentum in Quantum Me­
chanics (Princeton University Press, Princeton, New Jersey, 
1957). 

6 L. Pontrjagin, Topological Groups (Princeton University 
Press, Princeton, New Jersey, 1939). 

7 P. M. Cohn, Lie Groups (Cambridge University Press, 
New York, 1957). 

8 L. V. Ahlfors and 1. Sario, Riemann Surfaces (Princeton 
University Press, Princeton, New Jersey, 1957), p. 39. 

and moreover the relations: r(x)r(y) = r(xy), 
{r(x)} -1 = rex-I) are satisfied in the group opera­
tions of G; 

(v) there exists an element e in X such that 
e- l = eaIid (x, e) ~xforallx E X. 

The specification of conditions on X, r, G, and 
H for which such a construction is possible would 
seem to be a very difficult mathematical problem 
and we have not met any nontrivial constructions 
of this nature in the mathematical literature. The 
concept of a representation of a BCLLG can be 
formulated in an obvious way as a global analytic 
homomorphism into the ring of bounded operators 
on a suitable Hilbert space. The irreducibility of 
such a representation is also well defined, this being 
a property of any suitable set of operators.9 We can 
now define a "local representation" of a connected 
Lie group G as a true representation of a BCLLG 
over G. 

By actual construction below we demonstrate the 
existence of local representations which are not true 
representations for the group SU(2). 

2.1. Local Representations of SU(2). 

The local representations in which we are inter­
ested are analytic continuations of some of the 
infinite-dimensional true representations of the non­
compact locally compact group SL(2, R), first con­
structed by Bargmann. lo The connection arises from 
the occurrence of both SU(3) and SL(2, R) as 
analytic subgroups of the same complex group 
SL(2, C). These representations are then also local 
representations of SO(3) as this group is locally 
isomorphic with SU(2). 

A convenient parametrization of SU(2) is given 
by the three Euler angles a, {3, "1,5 in terms of which 
the normalized invariant measure on the group 
manifold is 

dp = (sin (3/161r2
) da d{3 d"l : 0 ~ fJ ~ 1r 

- 21r ~ (a + "I), (a - "I) < 21r. (13) 

The basic spinor representation can be written5 

(14) 

Let us define 

9 M. A. Naimark, Normed Rings (P. Noordhoff Ltd., 
Groningen, The Netherlands, 1960), p. 491. 

10 V. Bargmann, Ann. Math. 48, 568 (1947). 
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z = cos (3; 

cos t{3 = [tel + Z)]1; sin t{3 = [t(I - z)]i 

and the space H(j, X) as the linear vector space 
spanned by the products 

i+m-i-m 
W W , 

{r(j + m + l)r(j - m + I)}! = e;,}' 

Re m == Re X(mod 1) 

1m m = 1m X 

o ::.:; Re X ::.:; 1 

8 = w/w 

r = Re m - Re X= 0, ±1, ±2, 

(16) 

in which j is any complex number in Cl , the complex 
plane. 

We determine the transformation properties of 
the ei,A by substituting (14), to give 

i+m_i-m _ i+m-i-mr e1(3) + + . (1{3) - ]i+m 
W3 W3 - W2 W2 cos 2" X SIn 2" X 82 

( . (1{3) 1 + cos t(3) • -SIll 2" --- --+ - . 
X 82 X 

(17) 

We may expand this as a Laurent series in 82 for 

D,,!,m' (R) = {rej + m' + l)r(j - m' + I)}' 
, r(j + m + I)r(j - rn + 1) 

certain restricted values of the group parameters. 
The most important case is depicted in Fig. 1 

FIG. L Integration contour in the so-plane, for the case 
Icot WJ)x+/x-1 > IS.I > Itan (~!3)x+/X-I· 

thus defining the quantities Dr''''' (R), R E SU(2) 

• _ ~ Dm,m'(R) T' r' = Re m' - ReX 
e;.}, - L...i i ei.A (18) 

T'~-'" m' = m + (r' - r), 

from which we deduce the group properties 

D,;,m'(Ra) = 2: D7,m"(R2) D7"·m'(R1), Rg = R.Rl' 
m" (19) 

valid at least when all the defining series converge. 
An explicit expression for the D,;,m' is obtained 

by picking out the coefficients of the Laurent series 
by contour integration 

. ( 1 S )i-m 

,1 (cos (t{3)x + + sin (t{3)x - S2)' +m - sin (t{3) X + cos (!(3) xf dS
2 

J s~-m'+l 27r'i' (20) 

which can be converted into a hypergeometric form 
of integral/ 1 to give 

D,,!.m'( + -) = ( +)m+m'( -)",-m' dm,m'(z) , x, z, X X X , , (21) 

where the d7,1n' (z) can be written in the form 

d,,!,m'() = {ru + m + l)ru - m' + I)}i 
, z r(j + rn' + 1) r(j - m + 1) 

. (1 t zy(m+m') (1 ; zy(m-m') 

2Fd-j+ m, j+ m+ 1; (1 + rn - m') : t(1-z)] 
r(1 +m- m') 

(22) 

and three other forms obtained from the relations 

d,;,m' (z) = (_l)",-m' di",,-m' (z) 

= (-1) m-m' d7' ,m(z) = dim' ,-m(z) , (23) 

which are identical to the usual expressions for global 
representations.s These functions are analytic in the 

11 J. Gunson, Ph.D. thesis, Cambridge, 1962 (unpublished). 

cut z plane of Fig. 2. This shows that the branching 
surface H for these representations is just the mani­
fold z = -1. 

Further important properties of the d,;,m' (z) are 
the asymptotic relations 

/

1 I ±m'!2 

Id,;,m'(z)! ~ const lm'lm-i 1 + : ' 
larg (1 + z) I < 11' - E Re rn' ~ ± co (24) 

for fixed j, m, z, and large Irn'l, obtained by using 
the appropriate asymptotic expansions for the hyper­
geometric functions. 12 This can be used to calculate 

Z·I>~ANE ±~"""") 
(-¥) "-

CUT FOR 
----l--!l-.-

+ I (",.",) = ODD 
INTEGER ON~Y 

-\ 

FIG. 2. Cut for (n - mt) = odd integer only. ----
12 A. Erdelyi et al., Higher Transcendental Functions 

(McGraw-Hill Book Company, Inc., New York, 1956), Vol. I. 
p.75. 
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+0> 

e~ .• = L C';"""(R) e;:H, 
\,,'.-co 

r' = -Re m' - Re (1 - X) = 0, ±1, ±2, ... 

m' = m - r - r' - 1. (30) 

FIG. 3. Elliptical domain of convergence for the series in Evaluating C';''''' (R) as for Di''''' (R) we get 
Eq. (19). 

the domain of convergence of (19) in an elementary 
manner. The result is that the series converges in 

/(1 - Z2.1 - Zt)ll < jei(",+a') 1 < 1(1 + z2.1 + Zl)ll. 
1+~1+~ 1-~1-~ 

which finds an alternative expression in 

cos <'Y2 + at) E E(l _lz~(~lZ~ z;)i) 

., ~ ~ :: 1·1 ~ ~ :: I < 1. 

(25) 

(26) 

where E(a) is the ellipse with foci ±1 and passing 
through the point a. In terms of Za = Zl Z2 + (1 - zi) t X 
(1 - z;)i cos (/'2 + al), the ellipse becomes that 
shown in Fig. 3, These are precisely the conditions 
given by Henricp3 for the classical special case of 
(19), viz., 

P;(ZlZ2 + (1 - zDi(I - z;)' cos w) = P;(Zl)P;(Z2) 

+ 2 ~ ( 1)~ r(j - fl + 1) P~{ )p/1>{ ) (27) f,:t - ru + fl + I) ;\Zl i\Z2 cos Wfl· 

2.2. Functions of the Second Kind. 

Another region in which a Laurent series expansion 
of (17) can be made is for 

Icot (~) ~:I < 182 1 < Itan (~) ~:I => Re cos ~ < 0 

this defines the functions Ci''''' (R) in 

i+m ... ;-m 
W3 W3 

{ru + m + l)r(j - m + I)}! 

= L: Ci'''''(x+, cos~. x-) 
m' 

. {r(j + m' + I) r(j - m' + I)} t 

or 

13 P. Henrici, J. lliltl. Mech. Anal. 4, 983 (1955). 

(28) 

(29) 

with 

~'''''() = {rei + m + l)r(j - m' + 1)}t 
c, Z r(j + m' + 1) r(j - m + 1) 

.(1 t zy(m-m')e ; zy(tn+m') 

2Fl[-j + m, i + m + 1; 1 + m - m': HI + z)] 
e'FW-m)"r(1 + m - m') 

with ± for Imz < o. (32) 

The symmetry relations (21) are still satisfied with 
d -? c. From (29) and (18) we derive the group 
property 

Ci,m'(Ra) = L Di,m"(R2)Ci",m'CR1), 

m"-m" 
m±l.··· 

Ra = R2R1 • (33) 

In (28), it is seen that the Ci,m' (R) connect the 
spaces H(j, X) and H(j, 1 - X). In the special cases 
X = 0, ! these spaces are the same, and so for these 
cases we may define a function of the second 
kind ei,m' (z) by 

di,m'(z) = ci,-m'Cz) + 2/7r e"'·7rU-m) 

. (. ) ",m'C) 'sm 7r J - m ej' z, X = 0, t, 

from which the expression 

ei'''''(z) = tlr(j + m + l)r(j - m + 1) 
. r(j + m' + 1) r(j - m' + I)} t . e t zy{m+"")(l ; zfi(m-m,)(z ; It;-"'-l 

(34) 

2Ft[j + m' + 1, i + m + 1; 2j + 2 : 2/(1 - z)1 
r(2i + 2) 

X = 0, I (35) 

may be deduced by using the linear relations between 
hypergeometric functions. 14 

On defining 

(36) 

" Reference 12, p. 108. 
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we get from (19) and (33) the grouplike property 

E7· ... · (R3) = L D7·m" (R2)E7" ,m(RI), 
""'-m,m±l.··· 

Ra = R 2R I , (37) 

which is a generalization of the addition theorem 
for Legendre functions of the second kind. Indeed, 
for A = 0, !, and integral (j - m), we have the 
identity 

~.m·() = (-I)"-"'{ (j - m)! (j + m)!}! 
e, Z (j _ m')! (j + m')! 

(
1 + z)t(m+m')(1 _ )t(m-m') 

. -2- T Q7::' .m+m· (z) (38) 

on using Szego's definition of the Jacobi functions 
of the second kind.16 The asymptotic properties at 
large m' follow directly from (34) to give 

le7· m
• (z) I 

r-.J max (Im'lm-t I~ ~ :lm'/2, ImTm I~ ~ :lm'/2) 

for m' ~ ± co, fixed j, m, z, larg (z - 1) I < 7r - E. 

(39) 

The expressions for the convergence domain cor­
responding to (25) and (26) are 

Re Zl > 0 : 11 - Z2 1 + Zll 
1 + Z2 1 - ZI 

< le2H'Y.+a.J1 < 11 + Z2 1 - ZII 
1 - Z2 1 + ZI 

< 0 .11 - Zl 1 - Z2! 
. 1 + ZI 1 + Z2 

Re Z) < 0 : cos h2 + al) 

E E(1 _Z~i)tt ~ z;)f) : I~ ~ ::- ~ ~ ::1 < 1. 

(40) 

(41) 

As these functions are cut from + 1 to - co in the 
Z plane, care must be taken as to which sheets the 
functions are evaluated. This is treated in more 
detail by Henrici,13 who obtains the above regions 

16 G. Szego, Orthogonal Polynomials (American Mathe­
matical Society, New York, 1939). 

of convergence by different methods for the case 
Re ZI > 0, but does not mention the case Re ZI < O. 

3. CAUCHY KERNELS FOR THE 
COMPLEX ROTATION GROUP 

The manifold of SU(2) is a three-dimensional real 
analytic manifold which is topologically a three­
dimensional sphere S3' The associated complex mani­
fold is thus Sa X Ra, and so we cannot use the 
usual Cauchy kernels of Ca (which topologically is 
Ra X R3 ) for all types of contour. 

The type of representation which we are seeking is 

(42) 

holding for any function 1 which is holomorphic 
on the manifold of SU(2) (which is the "physical 
region" in applications) and hence holomorphic in 
a complex neighborhood. We choose M as the 
special contour which is the product of three single 
variable contours as depicted in Fig. 4. 

FIG. 4. Projections of the surface of integration M in three 
different planes. 

The contour in the Z2 plane takes the form of 
a pair of ellipses with foci ±I, one on each sheet 
of the Riemann surface of (z; - l)i. 

The choice of M is motivated by its use in pro­
jecting our partial waves by 

17,m' = i dpf(p) Drm.m·(p) = 2~ JM dpf(p)Ef .. · ... ·(p). 

(43) 

This can be proved from the expressions of the 
Ef· ... · (p) in terms of Jacobi functions of the second 
kind [cf. (38)]. The kernel K(pl! P2) thus possesses 
the following expansion 

+00 +co 00 

K(p),P2) = L L L (2j+ 1) 
m+m'--co tn-tn' _-co j-max(lml .Im' 1)-0 

. D~·m·(pI)Er·m·(p2) 

for Iz) + (z~ - 1)il < IZ2 + (z~ - 1)il; 

I~ ! ::1 < 1~~12 < I~ ! ::1; 
I~ = ::1 < 1~~12 < I~ = ::1. (44) 
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The summations can be carried out explicitly on 
using the classical expansion lIS 

1 co 

-- = 2: (2j + 1) 
11:2 - Zl ;-m~O 

.{ (j - m)! (j + m)! }(Z2 - 1)"'-""(Z2 + 1)"'+"" 
(j - m')! (j + m')! 2 2 

P (m-m',m+m')(z )Q(m-m"m+m')( ) 
• i ) i Z) 

for IZI + (zi - 1)*1 < (Z2 + (z: - 1)'1. 

giving 

K( ) - (z ){[(l + Z2)t (1 + Z)t] 
Pl>P2 - 2- Z1 + - + 

X2 Xl 

. [(1 + Z2)'X; - (1 + z)tx ~][(I -_ Z2)1 
X2 

(45) 

- (1 ~ Zl)t]r(1 - Z2)iX; - (1 - Zl);X~]r). (46) 

The particularly simple form of this kernel is a 
direct consequence of our particular choice of var­
iables and contours which take into account the 
essential topological structure of the complex space. 

The relation of (46) and (44) to the completeness 
condition [cf. Eq. (A3) of lJ is immediately obtained 
by evaluating the appropriate discontinuity to give 
the invariant 0 function on the group manifold. 

We list below some basic properties of the kernel 
function 

feR) = f P_' (M) dSK(pR, pS)f(S) , (invariance) (47) 

where p is a real rotation and p -I(M) is the integra­
tion contour consisting ofthe elements {p -IT; T M}, 

feR) = f M-' dSK(R-1
, S-l)f(S) 

(M- I = {S : S-1 E Ml) 

J dSK(R, S)K(S, T) = K(R, T). jM 
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In this paper we study in a mathematically rigorous manner how the electric potential, produced 
by small electronic charge density oscillations of definite wavenumber vector k in a plasma, behaves in 
the long-time liInit and the connection between this behavior and the stability of a given steady, 
spatially uniform, distribution of the plasma electrons. Our work is based on the linearized Vlasov 
equation and on the associated Poisson equation. We formulate a very general initial-value problem 
concerning this system of equations, writing the above electric potential at a given position vector r 
and time t as ",,(t)eik ' r multiplied by a suitable constant, where ",,(t) is independent of r. We establish 
the existence and uniqueness of solution of this problem by exploiting the fact that, in the linear 
theory, ",,(t) obeys an inhomogeneous Volterra integral equation of convolution type, which is rigor­
ously derived here. A detailed study of the asymptotic properties of the solutions of this equation 
for t -> '" is made, including the establishment of necessary and sufficient conditions on the initial 
perturbations (perturbation~ of the steady electron distribution function at t = 0) for tp(t) to be of 
negative exponential order as t -> "'. As a byproduct of this asymptotic investigation, we give a 
precise discussion of the Landau damping of long wavelength plasma oscillations in an initially 
Maxwellian plasma, concluding that in this case ",,(t) exhibits such damping for a broad range of 
initial perturbations and that the damping decrement is essentially that first computed by Landau. 
We introduce criteria of stability and instability based on the boundedness and unboundedness, 
respectively, in the limit t ..... co of certain nonnegative quantities Wp(t), which are defined as suitable 
norms of the perturbed electron distribution function. New sufficient conditions for stability and 
instability are proved for extensive classes of initial distributions and initial perturbations. These 
results are compared with conclusions on stability and instability reached by Backus. 

I. INTRODUCTION 

T HIS paper is devoted to a mathematically pre­
cise treatment of the way in which the electric 

potential, originated by electronic charge density 
waves of small amplitude in a plasma, behaves in 
the long-time limit and of the relationship between 
this behavior and the stability of plasma electronic 
distributions which are independent of spatial coor­
dinates and time. Our investigation is confined to 
plasma waves of definite wavenumber vector k. 

Recent results of Hayes 1 
,2 and Backus3 on various 

problems of the linearized Vlasov theory involving 
plasma disturbances of this last type are of particular 
relevance to the present work. We proceed to outline 
these results. 

In Hayes' two papers just cited, a basic role is 
played by an inhomogeneous Volterra integral equa­
tion of convolution type. Within the framework of 
the linearized Vlasov theory, this equation, derived 
in Ref. 1, governs a certain function 'P(t) [Eq. (2.3)4] 
which contains the entire dependence on the time t 
of the above electric potential. A special form of 
this integral equation had been found earlier by 

1 J. N. Hayes, Phys. Fluids 11, 1387 (1961). 
2 J. N. Hayes, Nuovo Cimento 30, 1048 (1963). 
3 G. Backus, J. Math. Phys. 1, 178 (1960). 
• References inside of square brackets in this Introduction 

refer to the present paper. 

Rosenbluth6 for the case of Maxwellian initial elec­
tron distributions. A subject of prime concern in 
Refs. 1 and 2 is the derivation of solutions 'P(t) 
of the integral equation in question which damp 
more rapidly than any exponential when t ~ co. 

An example of a 'P(t) exhibiting this "non-Landau" 
damping is given in Ref. 1 for initially Maxwellian 
plasmas. Necessary and sufficient conditions on the 
initial perturbations (perturbations of the steady 
electron distribution function at t = 0, due to the 
plasma oscillation of interest) for this last type of 
damping to occur are derive~ in Ref. 2 for a more 
general type of initial distributions. These results 
show that Landau's well-known conclusions6 on the 
damping of plasma waves in initially Maxwellian 
plasmas do not have the domain of validity origi­
nally ascribed to them. 

Backus,a beautiful investigations on stability in 
the cited linear theory are more general and rigorous 
than any of the earlier work on this subject. This 
author defines an initial electron distribution to be 
stable (unstable) if a certain nonnegative quantity 
A(t) [Eq. (4.2)], involving certain integrations over 
the perturbed electron distribution, is bounded (un­
bounded) as t ~ co. A (t) has several physical and 

5 M. Rosenbluth, Plasma in a Magnetic Field (Stanford 
University Press, Stanford, California, 1958), p. 23. 

6 L. Landau, J. Phys. (USSR) 10, (1946). 
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mathematical advantages which he points out very 
lucidly. In contrast to the approach of Refs. 1 and 
2, the discussions in Ref. 3 are centered on an in­
tegral equation governing the appropriate perturbed 
electronic distribution functions. Important new 
sufficient conditions for stability and instability are 
derived in Ref. 3. 

We now summarize the results of the present 
investigation. 

In Sec. II we formulate a very general initial­
value problem for the coupled system composed of 
the linearized Vlasov equation and of the appropriate 
Poisson equation, and we establish an existence 
theorem and a uniqueness theorem [Theorems 2.1 
and 2.2J for this problem. These theorems are proved 
by reducing the solution of the initial-value problem 
of interest to that of solving the previously men­
tioned integral equation for <p(t), which is rigorously 
derived in this section. Previous derivations1

,5 have 
been of a purely formal character. Of course, the 
cited integral equation employed in Ref. 3, which 
was obtained formally there, can also be given a 
precise derivation within the context of the linear 
theory by the methods of Sec. II. 

Section III is devoted primarily to the investiga­
tion of the solutions of the integral equation for 
<p(t) in the limit t -7 ro for an extensive class of 
initial distributions and initial perturbations. It 
should be kept in mind that the major portion of 
the results in this section, although of obvious 
relevance to plasma physics, are of much more 
general applicability, referring as they do to asymp­
totic properties of inhomogeneous Volterra integral 
equations of convolution type under ·certain well 
defined conditions. Laplace-transform language is 
used extensively in Sec. III. A basic role in the 
further work of this section is played by a lemma 
thereof [Lemma 3.1J which concerns the zeros of 
the so-called Landau denominator .1(8) (defined in 
Lemma 3.1) in the plane of the Laplace transform 
variable 8 and which applies to the class of initial 
distributions alluded to earlier in this paragraph. 
In Sec. III we derive a very general formula for 
<pCt) in the limit t -7 ro. In this section we also 
establish a theorem [Theorem 3.2J giving necessary 
and sufficient conditions on initial perturbations for 
<p(t) to be of negative exponential order in this limit 
as well as for <pCt) to belong to a more general class 
of functions. We conclude this section by giving a 
precise discussion of the Landau damping (asymp­
totically exponential damping) of plasma oscillations 
in the case when the initial distribution is Max­
wellian and when a certain dimensionless number K, 

proportional to Ikl [see the paragraph containing 
(3.14)], is a sufficiently small positive quantity. We 
find that such damping occurs in this case for a 
large class of initial perturbations, the asymptotic 
damping rate being essentially (but not exactly) 
the same as that computed by Landau.6 Our dis­
cussion of Landau damping is intimately related 
to the proof of the last cited theorem of this section 
and rests on rigorous results of the present author 
[Eqs. (3.15)] concerning the asymptotic location of 
the zeros of .1(8) in the limit K -7 +0. 

In Sec. IV we introduce a family of nonnegative 
quantities W,,(t) [Eq. (4.1)J, which are defined as 
certain norms of the perturbed electron distribution 
function. For a given P, we define stability and 
instability of the loCv) of interest in the W,,(t) sense 
in terms of the behavior of W,,(t) as t -7 ro, in a 
way parallel to that of Ref. 3. Weare of the opinion 
that, within the context of the present paper, 
W1(t) is the most natural member of the above 
family for use in stability studies in the linear theory 
and that W\(t) has all the advantages possessed by 
A(t) in this regard. However, the behavior of W,,(t) 
in the limit t -7 ro is also of interest when p ¢ 1. 
In Sec. IV, the behavior in question is studied for 
p ~ 1 by exploiting the asymptotic form of <p(t) 
in this limit. New sufficient conditions for stability 
[Theorems 4.1 and 4.3J and instability [Theorems 
4.2 and 4.4J are established for a wide variety of 
initial distributions and initial perturbations. On the 
basis of these results we are led to the important 
result that, generally speaking, stability in either 
our sense or in that of Backus has very little to do 
with the smoothness properties, as specified in Sec. 
IV, of the initial perturbations. We conclude Sec. IV 
with a comparison of our theorems on stability and 
instability with those of Backus. 

Examples of unperturbed distributions illustrating 
theorems of Sec. IV are given in the Appendix. 

n. A BASIC INITIAL-VALUE PROBLEM FOR PLASMA 
OSCILLATIONS IN THE LINEAR THEORY AND 

RIGOROUS DERIVATION OF AN INTEGRAL 
EQUATION FOR THE ELECTRIC POTENTIAL 

IN THAT THEORY 

Let r = (x, y, z) and v = (u, v, w) stand for the 
position and velocity vectors, respectively, of an 
unbound electron pertaining to a completely ion­
ized gas, the cited components of r and v being 
referred to a common Cartesian frame which will 
be conveniently chosen in a manner specified below. 
Let lo(v) represent a one-electron distribution func­
tion with respect to the variables x, y, z, u, v, w, 
this function being independent of r and of the time t. 
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The change induced in this distribution function, 
which we regard as the initial electron distribution, 
by externally produced disturbances will be denoted 
by Mr, v, t). We shall work within the usual approx­
imation in which Mr, v, t) and the electric potential 
<P(r, t) produced by the charged particles of the 
plasma satisfy the linearized Vlasov equation 

aft(r, v, t)/at + v'\lrf,(r, v, t) 

+ (e/m)(\l,fo(v)·\lr<P(r, t)] = 0, 

and the Poisson equation 

\l;<P(r, t) = 41ren Iv f,(r, v, t) dv 

appropriate to the normalization 

Iv fo(v) dv = 1. 

(2.1a) 

(2.1b) 

(2.2) 

Here e and m stand for the absolute value of the 
electronic charge and for the electronic mass respec­
tively, and n represents the average electronic num­
ber density. The notation J v R(v) dv serves to 
denote the integral of a given function R(v) over 
the entire velocity space V = {( u, v, w) I Ivl < ex)}. 

We are interested in solutions of (2.1a) and (2.1b) 
such that 

f,(r, v, t) = G(v, t)e,k.(r-vl) , 

<P(r, t) = - (41ren/e)ep(t)eik •r
, 

(2.3a) 

(2.3b) 

where G(v, t) and ep(t) are independent of rand, 
of course, k == Ikl and n are always taken to be 
positive. 

It is expedient to begin by a purely formal 
derivation of the pertinent equations obeyed by 
G(v, t) and ep(t). 

In this derivation and throughout this paper, we 
shall choose the Cartesian frame mentioned earlier 
in a familiar and convenient way, namely, in such 
a way that k = (k, 0, 0), i.e., so that u is the compo­
nent of v parallel to k. 

Hence Eqs. (2.1a) and (2.3a) yield 

aG(v, t)/at - H(v)eiku'ep(t) = 0, (2.4) 

where 

H(v) == (iw!/k)afo(v)/au , (2.5) 

and where Wp == (41rni/m)l. Therefore 

G(v, t) = G(v) + H(v) { eikU"ep(t') dt', (2.6) 

if G(v, t) is subjected to the initial condition 

G(v) = G(v, 0). (2.7) 

From (2.1b), (2.3a), and (2.3b), one obtains: 

ep(t) = Ive-iku'G(V, t) dv. (2.8) 

Substituting (2.6) into (2.8), it is seen that ep(t) 
satisfies the integral equation 

ep(t) = get) + { h(t - t')ep(t') dt', (2.9) 

where 

get) == Iv e-ikU'G(v) dv, 

h(t) == Iv e-ikU'H(v) dv. 

(2.10) 

(2.11) 

Within the context of these heuristic considera­
tions, we conclude that the problem of determining 
a function G(v, t) with a prescribed initial value 
G(v) can be reduced to the much simpler problem 
of solving (2.9), since the desired G(v, t) is then 
given by (2.6). The remainder of this section is 
devoted to a rigorous investigation of solutions of 
(2.1a) and (2.1b) obeying (2.3a) and (2.3b). This 
investigation will provide a firm mathematical basis 
for (2.9) and for the way of computing G(v, t) 
just mentioned. 

Henceforth, all references to measurability in the 
text should be understood in the Lebesgue sense. 
In this paper, integrability will mean, in general, 
only Lebesgue integrability 7 and the integrals of 
this paper are intended to be interpreted solely as 
Lebesgue integrals in the general case. The fact that 
in particular instances (for example, for the one­
dimensional integrations over intervals of the taxis 
which occur here) our remarks on integrability in 
the text and the pertinent integrals can also be 
interpreted in the sense of Riemann should be per­
fectly obvious to the reader and will not be men­
tioned any further. 

Besides always requiring that fo(v) be integrable 
over V, as expressed by (2.2), we shall invariably 
suppose that this integrability property is possessed 
by G(v) and H(v), i.e., that 

Iv IG(v) I dv < ex) , Iv IH(v) I dv < 00. (2.12) 

We pause to derive some useful properties of get) 
and h(t). Notice that (2.12) and Fubini's theorem 

7 In this paper, Lebesgue integrability will always be taken 
to mean Lebesgue summability, i.e., a function will be re­
garded here as being integrable in the Lebesgue sense over a 
given set if its integral in this sense over the set in question 
exists and is finite. 
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imply that (2.10) and (2.11) can be rewritten as 
follows: 

where 

g(t) i: e-ikU'G(u) du, 

h(t) i: e-n<·'H(u) du, 

G(tl) - i: i: G(v) dv dw, 

H(u) =2 i: i: H(v) dv dw. 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

From (2.12), (2.15), (2.16), and Fubini's theorem, 
we conclude that G(u) and H(u) are in L 1 ( - ro, ro). 

Therefore, get) --+ 0 and h(t) --+ 0 as It I --+ ro by 
the Riemann-Lebesgue lemma, and get) and h(t) 
are continuous functions of t for all (finite) t by an 
elementary property of Fourier transforms of func­
tions in L1 (- ro, ro ). Thus, get) and h(t) are uniformly 
bounded over the real line. 

We now turn to the formulation of two basic 
problems of the linear theory. 

The next paragraph is devoted to the statement 
of the first of these problems, which is one of the 
most general physically interesting initial-value prob­
lems relative to solutions of the linearized Vlasov 
equation and of the Poisson equation obeying (2.3a) 
and (2.3b). In that paragraph and in the remainder 
of this Section, V' represents the subset of points 
of Von which both of the functions G(v) and H(v) 
exist and are finite. It is plain from the integrability 
conditions (2.12) that V' differs from V by at most 
a set of (three-dimensional Lebesgue) measure zero.s 

Problem A. For prescribed G(v) and H(v), find 
functions Mr, v, t) and <I>(r, t) with the following 
properties. The latter two functions have the respective 
forms (2.3a) and (2.3b) for all r, every v E V', and 
each t ~ O. The corresponding functions G(v, t) and 
'P(t) are required to be finite at each such v and t. 
Moreover, such a G(v, t) is required to satisfy the 
initial condition (2.7) and to possess these further 
properties: (1) aG(v, t)/at exists and is finite for each 
v in the cited range and for each t > 0, and for every 
such v and for t = 0 the right-hand derivative of 
G(v, t) with respect to t exists and is finite; (2) for 

8 The dimensionality of the Lebesgue measure correspond­
ing to the terms "a.e." and "almost all" in the text should be 
obvious always from the context in which these terms occur. 
It should be kept in mind that henceforth in this paper t is 
always finite, so that, for example, "each t ~ 0" should be 
understood to mean "each finite t ~ 0." The only restriction 
imposed on r in this paper is that Irl < "'. 

every finite closed interval [0, T],9 G(v, t) is integrable 
over the product space V X [0, T], i.e., 

II IG(v, t)1 dv dt < ro. (2.17) 
vx [0. Tl 

Finally, the said two functions f 1 (r, v, t) and <I>(r, t) 
are required to satisfy (2.1a) for each r, all v E V', 
and every t > 0; to satisfy for each such r and v 
and for t = 0 the modification of (2.1a) in which 
af 1 (r, v, t) / at is replaced by the corresponding right­
hand derivative with respect to t; and to satisfy (2.1b) 
over these last ranges of r and v for all t ~ O. 

The second problem is 

Problem B. For prescribed get) and h(t), i.e., for 
given G(u) and H(u), find a function 'P(t) which exists 
and is finite at all t ~ 0, which is integrable over each 
[0, T], and which obeys (2.9) for every t ~ O. 

Since get) and h(t) are continuous in t over this 
last range, one knows from the theory of Volterra 
integral equations of the second kind that Problem B 
has a unique solution 'P(t) which is continuous on 
every closed interval [0, T], i.e., right-continuous at 
t = 0 and continuous at each t > O. 

The existence and uniqueness of solution of Prob­
lem B will be exploited below to establish cor­
responding properties for Problem A. 

Our first theorem maps each solution of Problem 
A on the unique solution of Problem B. 

Theorem 2.1. Let f1(r, v, t) and <I>(r, t) constitute a 
solution of Problem A for prescribed G(v) and H(v). 
Then the function 'P(t) appearing in (2.3b) is the 
solution of Problem B for the given G(v) and H(v), 
and the function G(v, t) in (2.3a) is determined in 
terms of this <p(t) by (2.6) for every v E V' and 
each t ~ O. 

Proof: First we prove that (2.6) is true in the 
sense of the theorem. 

If the functions Mr, v, t) and <I>(r, t) fulfill the 
requirements of Problem A, (2.4) is evidently valid 
for the corresponding functions G(v, t) and <pet) for 
each v E V' and each t > O. Now, property (1) 
implies that this G(v, t) is an absolutely continuous 
function of t over each [0, T] for every fixed v E V'. 
Hence, since (2.7) holds over V' in this case, we 
conclude that the G(v, t) in question obeys the 
equation 

G(v, i) = G(v) + { aG~'1 I') dt' (2.18) 
----

• As usual, the symbol [a, b] denotes a closed interval. The 
symbol [0, TJ should always be understood as a finite closed 
interval. 
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over this range of v for each t > 0. Combining 
(2.18) with (2.4) we deduce that (2.6) obtains in 
the manner prescribed in the theorem. 

N ext we establish that the function 'PU) in the 
previous paragraph, which is finite at each t ~ 0 
because of a requirement of Problem A, is the solu­
tion of Problem B for the G(v) and H(v) of interest. 

It should be obvious that, for t ~ 0, (2.8) is 
rigorously correct for the present G(v, t) and 'P(t). 
From (2.8), property (2), and Fubini's theorem, we 
see that this 'P(t) is integrable over any [0, Tj. Hence, 
because of (2.12), the said 'P(t) is such that H(v)'P(t) 
is integrable over each V X [0, Tj. This last integra­
bility property and Fubini's theorem allow us to 
interchange the order of the integrations over V 
and [0, tj occurring in 

Our heuristic derivation of (2.9) is easily justified 
for the 'P(t) in question for t :::: 0 by exploiting, 
in particular, the validity of this interchange of 
integrals and the noted validity of (2.6) and (2.8) 
under the conditions of interest. Hence this 'P(t) is 
indeed the solution of the pertinent problem B, so 
that the proof of the theorem is complete. 

Our second theorem shows that the solution of 
Problem B yields a solution of Problem A and that 
this last solution is unique to within suitable null sets. 

Theorem 2.2. Let G(v) and H(v) be prescribed. 
Let 'P(t) be the solution of the corresponding Problem B 
and define G(v, t) by (2.6) everywhere on V' for t :::: 0 
in terms of the functions G(v) and 'P(t) just mentioned. 
Define Mr, v, t) in terms of this G(v, t) by (2.3a) 
for every r and over the range of v and t last cited, 
and define q,(r, t) in terms of this 'P(t) by (2.3b) for 
all such rand t. Then f 1 (r, v, t) and q,(r, t) constitute 
a solution of the Problem A pertaining to this G(v) 
and H(v). Moreover, any functions nCr, v, t) and 
q,/(r, t) satisfying the latter Problem A coincide with 
the respective functions fl(r, v, t) and q,(r, t) of the 
last sentence for all r, all v E V', and each t :::: o. 

Proof: Define 'P(t) as stated in the theorem. Then 
the right-hand side of (2.6) is defined and finite for 
v E V' and t :::: 0, since then 'P(t), being the solution 
of the pertinent Problem B, is integrable over all 
[0, Tj. Hence the specification of G(v, t) by means 
of (2.6) mentioned in the theorem actually yields 
a function G(v, t) which assumes a finite value at 
each v E V' and t :::: o. From the fact that (2.6) 
holds for every such v and t for the functions G(v, t) 

and 'P(t) of the theorem, and from the continuity 
of this 'P(t) on every [0, Tj, it follows first that 
these two functions satisfy (2.4) over the last cited 
range of v and for all t > 0, and second that the 
two functions in question obey for all such v and 
for t = 0 a modified version of (2.4) in which 
aG(v, t)/at is replaced by the corresponding right­
hand derivative with respect to t. Hence it should 
be clear that the G(v, t) under discussion possesses 
property (1). 

To prove that this G(v, t) also has property (2), 
we observe that the circumstance that (2.6) is 
satisfied over V' for t :::: ° in the case of interest 
implies that the inequality 

IG(v, t) I ::::; IG(v) I + IH(v) I { 1'P(t') I dt' (2.19) 

is true on the same ranges of v and t. Because the 
integral over [0, tj in (2.19) is itself integrable over 
any [0, Tj, due to the fact that the present 'P(t) 
enjoys this property, and since (2.12) obtains, the 
right-hand side of (2.19) is integrable over each 
V X [0, Tj. Therefore, the G(v, t) under discussion 
fulfills (2). 

Define the functions fl(r, v, t) and q,(r, t) as 
prescribed in the theorem. Then the fact that (2.4) 
and its cited modification are valid over the above 
ranges and an elementary computation show that 
(2.1a) and its modification mentioned in the state­
ment of Problem A are satisfied by these two func­
tions in the sense specified by the latter statement. 

A trivial calculation shows that the last two 
functions also satisfy (2.1b) as specified in Problem 
A, provided that the corresponding 'P(t) and G(v, t) 
obey (2.8) for t :::: O. That (2.8) holds in this sense 
follows with the aid of (2.6), (2.9), to (2.11), and 
Fubini's theorem. The latter is employed in a way 
similar to that in the proof of Theorem 2.1, its 
present use being justified for reasons identical to 
those mentioned in that earlier application. 

We have thus established that the functions 
f 1 (r, v, t) and q,(r, t) defined in the present theorem 
constitute a solution of Problem A. We proceed 
to show that the solution of this problem is unique 
in the specified sense, thereby completing the proof 
of the theorem. 

Consider two pairs of functions, say f 1 (r, v, t), 
q,(r, t) and fi (r, v, t), q,1 (r, t), both of these pairs 
satisfying the conditions of Problem A for the same 
G(v) and H(v). If G(v, t) and 'P(t) correspond to 
the first pair and G'(v, t) and 'P'(t) to the second one, 
in the sense of (2.3a) and (2.3b), the uniqueness 
assertion of the theorem is equivalent to the state-
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ment that G'(v, t) = G(v, t) and «/(t) = <p(t) on 
V' and for t ~ O. Now, Theorem 2.1 implies that 
G(v, t) obeys (2.6) over such ranges of v and t and 
that G' (v, t) is equal to the right-hand side of (2.6) 
over the ranges in question, provided that <p(t) is 
replaced by <p'(t) in this right-hand side. Using 
Theorem 2.1, it is also seen that <p(t) and <p'(t) are 
solutions of Problem B for the same G(v) and H(v), 
and hence that <p'(t) = <p(t) in the stated sense by 
virtue of the uniqueness of solution of this problem. 
One therefore concludes from the structure of (2.6) 
that G'(v, t) = G(v, t) in the desired sense, so that 
the above uniqueness assertion concerning Problem 
A has been proved. 

III. BEHAVIOR OF THE ELECTRIC POTENTIAL 
FOR LONG TIMES 

Before discussing the behavior of <p(t) in the 
long-time limit, it is expedient to present some 
definitions and auxiliary results, which include 
Lemma 3.1 on the zeros of the Landau denominator. 
Naturally, the functions <p(t) occurring henceforth 
should always be understood to be solutions of the 
appropriate Problem B. 

We first introduce the class of functions E(a), 
constituted by those functions f(t) for which 
f(t)eG' E L 2 (0, co) for some real a. Classes of this 
type will play an essential part in the remainder 
of this paper. We believe that the attention paid 
to such classes in this investigation is justified 
a posteriori by the broad scope of new results on 
the temporal evolution of plasma oscillations ob­
tained here by invoking the properties of functions 
pertaining to the classes in question. 

Let us denote the Laplace transform of f(t) by 
1(s), where s = u + iT (u, T real), i.e., 

(3.1) 

Theorems of Paley and Wiener10 imply that a 
necessary and sufficient condition for f(t) to belong 
to E(a) for a given real a is that 1<s) have the 
following properties: 

(a) 1<s) is regular for u > -a; 

10 R. E. A. C. Paley and N. Wiener, Fourier Transforms 
in the Complex Domain (American Mathematical Society, 
Providence, Rhode Island, 1934), Vol. XIX. See especially 
Theorem I in Sec. 2 and Theorems IV and V in Sec. 3. 

These properties will be particularly useful in the 
present section. 

Although the functions get) and h(t) of this paper 
are automatically in every class E( - E), E > 0, 
because of the integrability of G(u) and H(u) over 
[- co < u < co] guaranteed by (2.12), this integra­
bility is obviously insufficient to ensure that get) or 
h(t) belong to a class E(c) with c > O. In the case of 
such physically significant distributions fo(v) as the 
Maxwellian and Lorentzian ones, h(t) fulfills this 
last condition. In general, the additional require­
ments beyond mere integrability which are imposed 
on H(u) by demanding that h(t) belong to such a 
class are much stronger than the corresponding 
additional requirements on G(u) entailed by the 
condition that get) belong to a class of this type. 
Consider H(u) first. Employing (2.5) and the reality 
of fo(v), we see from (2.14) that H(u) is purely 
imaginary, so that Ih( -t)1 = Ih(t)l. Thus, if 
h(t)ebt E L 2 (0, co), then also h(t)e-bl E L 2 ( - co, 0). 
From this remark and theorems of Paley and 
Wiener/ 1 we infer that h(t) E E(b) for some b > 0 
if and only if H(u) has the properties: (a') it can 
be continued analytically into the strip -b/k < 
u' < b/k of the u + iu' plane [modifying H(u), 
if necessary, on a set of measure zero]; (b /) the 
analytic continuation H(u + iu') of H(u) possesses 
the property that 

sup 100 

IH(u + iu') [2 du < co. 
lu'l<blk _00 

Since G(u) need not be real nor purely imaginary, 
nor even or odd, the specification of get) for t ~ 0 
tells one nothing about get) when t < 0 in the general 
case. This fact is reflected in the circumstance that, 
even if get) E E(b) for some b > 0, G(u) may, 
for example, be unbounded 12 and not belong to 
L 2 ( - co, co), or it may have unbounded derivatives. 

Lemma 3.1. The function 

Jl(s) == 1 - h(s) (3.2) 

has no zeros for u > M == max,~o h(t). Moreover, 
if b is any real number such that h(t) E E(b), then 
Jl(s) has at most a finite number of zeros in any 
vertical strip 

11 See the cited Theorems I and IV of Paley and Wiener's 
book in the previous footnote. 

12 Of course, one is naturally inclined to distrust results 
obtained from the present linearization of the Vlasov theory 
for the case of unbounded initial perturbations G(u). Whether 
this intuitive feeling is always in accordance with the facts is 
quite another matter, which plainly lies outside of the scope 
of this investigation. Hence it has seemed more prudent not 
to exclude explicitly such perturbations from this paper. 
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-b < (1 < {3, (3.3) 

where (3 is any real number greater than _b. 13
•
14 

Proof: The assertion that ..1.(s) ~ 0 when (1 > M 
is implied by the inequality 

Ih(s) I ::::; 1'" Ih(t) Ie-a' dt ::::; M. (3.4) 
o (1 

To prove the second assertion of the lemma, we 
notice that the fact that h(t) E E(b) for some 
real b implies that h(t)e- U

' E L 1 (0, co) for each 
(1 > -b, by virtue of the Schwarz inequality. 
Invoking the Riemann-Lebesgue lemma, we there­
fore conclude that 

lim h«(I + iT) = 0, (3.5) 
11'1_(0 

for fixed (1 > -b. Therefore, for each such (1, ..1.(s) ~ 1 
as ITI ~ co in the present case. Combining this 
result with the regularity of ..1.(s) for (I > -b, 
entailed by the hypothesis that h(t) E E(b), and 
with the isolated nature of the zeros of ..1.(s) lying 
in regions of regularity of this function, we easily 
conclude that ..1.(s) has at most a finite number of 
zeros in vertical strips (3.3). 

In the next theorem, we give a formula for !pet) 
which is particularly pertinent in the study of the 
asymptotic properties of this function for long 
times. In this theorem, we introduce the symbol 
p == min {a, b I, where a and b are real numbers 
such that get) E E(a) and h(t) E E(b). We have 
seen earlier in this section that such real numbers 
always exist for the functions get) and h(t) of 
interest. 

Theorem 3.1. As t ~ co, we have 

!pet) = L P i (t)e
8

•
t + g(t) + O(e-(P-')'). (3.6) 

Res,>-p 

13 Notice that Lemma 3.1 holds under the sole assumption 
that h(t) is an arbitrary element of some class E(b), provided 
that we appropriately modify the definition of M in the said 
lemma. 

14 Results on the zeros of fl(s) are obtained also in Refs. 2 
and 3. (a) The italicized result on the zeros of fl(s) on p. 1060 
of Ref. 2 is a special case of Lemma 3.1. (b) Lemma 3, pp. 
181-182 of Ref. 3 concerns the positions of the zeros of fl(s) 
under the sole conditions that djo(u)/du and, presumably, 
fo(u) [see Eq. (AI) of the AJ?pendix] are in L I ( -00, 00). How­
ever, these conditions are Insufficient to imply all the con­
clusions of this last lemma. In fact, the proof in Ref. 3 of the 
lemma in question involves the use of the formula for £(8) 
occurring in Eq. (21) of this reference and lying closest to the 
center of p. 181 thereof, a formula which is not generally valid 
under the conditions on fo(u) just alluded to. When 8 is not 
real the formula in question, which can be obtained by an 
obvious partial integration, holds, for example, if fo(u) is abso­
lutely continuous over all closed finite intervals, Ifo(u)/u)l-> 0 
as lul-> 00 and dfo(u)/du E ~(-oo, 00). A similar criticism 
can be made concerning the validity of the partial integration 
with respect to 14 employed by Backus to prove the inequality 
(14) of Ref. 3. 

Here, P.(t)e'" is the residue of U(s)e·'/..1.(s) at the zero 
8. of ..1.(s), so that 

ni-l 

Pi(t) = LAi .... !"', (3.7) 
... -0 

where n. is the multiplicity of s. and the A;.... are 
constants; the sum in (3.6) ranges over the finite set 
of zeros, if any, in the half-plane (1 > - p, and is 
defined as zero if no such zeros occur; and E > 0 
is arbitrary. 

Proof: We first show that 

!pet) = get) + ~ fa +ia> U(s)h(s) eO' ds (3.8) 
2m a-ia> ..1.(s) 

for each t ~ 0, where a is any real number 
greater than M. Thus ..1.(s) ~ 0 for (1 ~ a. 

To derive (3.8), we begin by observing that if 
{3 > - p is a fixed real number such that ..1. ({3 + iT) ~ 
o for IrI < co then 

11
iJ
+

i
<D U(s)h(s) eO' dsl 

iJ-ia> ..1.(s) 

I I 
(3.9) 

< I' fa> g({3 + iT)iiCf3, + iT) dT < N({3)/' 
- _a> ..1.({3 + '/,T) 

for each real t, where N ((3) is a finite number in­
dependent of t. In fact, U(s) and h(s) are square­
integrable along any vertical line in the half-plane 
(I > - p, so that g(s)h(s) is absolutely integrable 
along any such line. Moreover, for any such (3, the 
regularity of ..1.(s) for (1 > - p and the established 
property that, for any such (I, ..1.(s) ~ 1 as ITI ~ co 

imply that inf,T/<a> 1..1.({3 + iT) I > O. The remarks 
in the preceding two sentences yield (3.9). 

The basic element in our proof of (3.8) is a 
powerful theorem of Titchmarsh, 15 whose hypotheses 
are satisfied by get) and k(t) because of the continuity 
and boundedness of these functions. This theorem 
implies that (3.8) holds for t ~ 0 in the mean-square 
sense, i.e., with 

replaced by 

But (3.9) implies that the integral in (3.8) converges 
absolutely for every real t, and therefore (3.8) holds 
a.e. on t ~ O. Now, the right-hand side of (3.8) is. 

~ E. C. Titchmarsch, Introduction to the Theory of Fourier 
Integrals (Oxford University Press, New York, 1948), 2nd ed., 
p. 132, Theorem 147. See, in particular, Eq.·(11.5.3) 'in this 
last page. . 
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<continuous at each real t because get) has this 
continuity property and because the integral in (3.8) 
also possesses it by virtue of its absolute convergence 
and of the Riemann-Lebesgue lemma. Since the 
left-hand side of (3.8) is continuous over each [0, Tj 
because it is the solution of Problem B, it follows 
that (3.8) is not only satisfied a.e. on t ~ 0, but 
everywhere on this range. 

Second, we derive (3.6) from (3.8). By Lemma 3.1, 
the number of zeros Si in the half-plane IT > - p 

is at most finite. Therefore, there exists a constant 
o > 0 such that deS) ~ 0 on the straight line 
[- (p - 0) - i 00, - (p - 0) + i 00 j and such that 
the zeros of deS) at the right of this line are the 
same as those in the half-plane IT > -po Now, the 
integrand of the integral in (3.8) tends to zero as 
ITI ~ 00 for fixed IT > -p, by virtue of the fact 
that (3.5) and the analogous equation for g(s) hold 
for all such IT. Hence, the usual argument of bounded 
convergence and the analyticity of g(s) and ii(s) 
when IT > - p allow us to evaluate the integral in 
(3.8) by replacing the Bromwich path [a - i 00, 

a + iooj by [-(p - 0) - ioo, -(p - 0) + iooj, 
taking into account the poles of the corresponding 
integrand crossed during this path displacement. 
Since the residues P i (t)e8i

' of g(s)e"/ deS) are equal to 
those of g(s)ii(s)e"/ deS) in the common region of 
analyticity of g(s) and ii(s), we thus find 

'PCt) = get) + L PiCt)e'" 
Re 3i>-P 

+ 
1 j-(P-O)+i'" g(s)ii(s) "d 

-. ---e s 
2m, - (p-o)-.", deS) 

(3.10) 

for t > O. Since 0 > 0 can be chosen smaller than 
any E; 0 and since the integralin (3.10) is O(e-(p-O) I) 
as t ~ 00 by virtue of (3.9), the theorem follows. 

Necessary and sufficient conditions for the occur­
rence of an important type of damped functions 
'P(t) are given in 

Theorem 3.2. Let h(t) satisfy the double requirement 
that h(t) E E(b) for some b > 0 and that deS) ~ 0 
for IT ~ O. Then a necessary and sufficient condition 
for 'P(t) to be of negative exponential order when t ~ 00 

i$ that get) have this same property. Moreover, if h(t) 
fulfills this double requirement, a necessary and suffi­
cient condition for 'P(t) E E(c) for some c > 0 is 
that get) E E(a) for some a > o. 

Proof: We shall only prove the portion of this 
theorem concerning necessary and sufficient condi­
tions for 'P(t) to be of negative exponential order 
in the limit t ~ 00. This is the most interesting 
portion from the standpoint of the subsequent dis-

cussions of this section. The remainder of the the­
orem can be established by arguments practically 
identical to those given below. 

(a) Necessity. Let positive constants band c 
exist such that h(t) E E(b) and 'P(t) = O(e-CI

) for 
t ~ 00. Denote by J.I. an arbitrary positive constant 
such that J.I. < min {b, c}. The assumptions on h(t) 
and 'P(t) just made evidently imply that h(t), 
'PCt) E E(J.I.). Exploiting (2.9) and the Schwarz 
inequality, we therefore find under the present 
circumstances: 

!gCt)! ::; 1'P(t) I + { Ih(t - t') I !ep(t') I dt' 

= !ep(t)! + e-~' { !e~(I-I')h(t - t')! !e""'P(t')! dt' 

::; !ep(t)! + e-"'{i'" !e~" h(t,)!2 dt' Y 
X {ia> !e""ep(t,)!2 dt'Y = O(e-c!) + O(e-"') (3.11) 

for t ~ 00, which concludes our proof of necessity. 
(b) Sufficiency. Let get) = O(e-a') for some 

a > 0 as t ~ 00 and let h(t) obey the double require­
ment of the theorem. If a is any positive number 
smaller than a, it then follows that get) E E(a). 
Therefore, the p corresponding to this a and to the 
b in the first sentence of the theorem is positive 
and smaller than a, so that get) = O(e-Pl) a fortiori. 
Hence, applying Theorem 3.1 to the get) and h(t) 
just specified, keeping in mind that deS) has no 
zeros for IT ~ 0 in the case under discussion, we 
deduce that 

ep(t) = L P.(t)e'" + O(e-(p-·lI) (3.12) 
-p<Rea.<O 

as t ~ 00 for each E > 0 and for the p in question, 
where the sum in (3.12) is taken to range over the 
finite set of points Si, if any, in the strip - p < IT < 0 
and as zero otherwise. Invoking (3.7), the right­
hand side of (3.12) is seen to be a finite sum of func­
tions of negative exponential order. Thus, 'P(t) is 
a function of the same kind under the present 
hypotheses, so that our sufficiency proof is complete. 16 

16 The sufficiency aspect of Theorem 3.2 concerning solu­
tions ",(t) of negative exponential order can be proved with­
out appealing to Theorem 3.1. Let the hypotheses on get) 
and h(t) and the choice of p be the same as in part (b) of the 
proof in the text. Let v be any positive number smaller than 
the minimum perpendicular distance of the zeros, if any, in 
the strip -p < tr < 0 or smaller than p if no such zeros occur. 
Clearly, an equation of the same structure as (2.9) connects 
the functions g(t)e", h(t)e", and 'PCt)e". It is easily shown 
that Theorem 145, p. 304, of Titchmarsh's book in the previ­
ous footnote is applicable to this equation satisfied by these 
three functions. That theorem implies that ",(t) E E(v) in 
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Let us examine (3.12) more closely. When for 
each 8. in this strip either ~(Si) = 0 or P.(t) == 0, 
(3.12) invites no special comment, for then it merely 
states that tp(t) = O(e-(P-.)I) as t ~ co [Pi(t) == 0 
for every 8; in the case of the non-Landau damped 
behavior alluded to in the Introduction and dealt 
with in Refs. 1 and 2J. Consider next the situation 
when there exists at least one S; in the strip 
-p < (j < 0 such that the corresponding P;(t) t= O. 
In this case, the most significant contribution 1:;<) 

tp(t) in the limit t ~ co will obviously be furnished 
by the group of terms in (3.12) which pertain to 
the set of s. in this strip having P ;(t) t= 0 and having 
the maximum value of iRe s.l. Calling this maximum 
value 'Y, we shall say in this case that rp(t) damps 
asymptotically with the rate 'Y. 

It is interesting to discuss the damping of rp(t) 
in the important Maxwellian case: 

fo(v) = (2~re-mlvl'/2e (8) 0). (3.1:~) 

If (3.13) holds, it is easily proved that h(t) E(h) 
for each b > 0 and that 

~(s) = K-
2 {1 + K2 - 7rV' erfc (z)}, (3.14) 

where z == s/2twp l{ and I{ == kCmB/4me2
)!,11 Ev­

idently, the function ~(s) in (3.14) is an entire 
function of s. It is known that ~Cs) ,= 0 in the half­
plane (j ~ 0 when (3.14) holds. IS It can also be 
demonstrated for the Maxwellian distribution th8,t 
~Cs) has an infinite number of zeros in the half-plane 
(j < 0, all of these zeros being simple. 19 

the present case. Combining the last result with reasoning 
analogous to that used in obtaining (3.11), we deduce that 
<P<,t) = OCe-") as t -> 00, which completes the desired sufli­
ciency proof. The sufficiency assertion of the final sentence of 
Theorem 3,2 also follows by the methods of this footnote. 

17 Of the many papers in which formulas equivalent 1.0 
(3.14) occur, one may cite that of J. D. Jackson, J. Nucl. 
Energy: Pt C, 1, 171 (1960) [Eq. (A2.8)J. 

18 For a proof that (3.14) implies that .:l(8) ~ 0 for (T 2:: 0 
see Ref. 3, Sec. VI. One can also prove this fact as follows. 
Consider a closed path composed of a segment of the imagi­
nary axis and of a semicircle of radius R in the half-plane 
(T ~ O. Using a familiar asymptotic formula for erfc(z), (3.14) 
entails that .:l( 8) ~ 0 on this path for large enough R and 
that the change in arg A( 8) around this path approaches zero 
asR->oo. 

11 To show that A( 8) has an infinite number of zeros in the 
half-plane (T < 0 when (3.14) holds, we observe that the right­
hand side of (3.14) is an entire function of order 2. Such a 
function has an infinite number of zeros unless it is of the 
form P(z) exp [Q(z»), where P(z) is a polynomial and Q(z) is 
quadratic in z, by Hadamard's factorization theorem [see, for 
example, E. C. Titchmarsh, Theory oj Functions (Oxford Uni­
versity Press, London, 1939), 2nd ed., p. 250]. Since this is 
not the case here, the present A(s) has an infinite number of 
zeros, which lie in the half-plane (T < 0 because of the cited 
fact that this A(8) has no zeros when (T 2:: O. Dr. J. N. Hayes 
(private communication) has observed that the simple nature 
of all these zeros follows in an elementary way by computing 
dA(Si)/ds. 

Applying Lemma 3.2 to the example under dis­
cussion, we conclude that there is a finite number 
of points 8, which lie closer to the imaginary saxis 
than all the other 8. when (3.14) holds. In addition, 
one can show that (3.14) implies that there are 
exactly two zeros of ~(s), s+ and s_, closest to this 
imaginary axis in the limit K ~ +0. These zeros 
are given by 

s± = u ± if, 

u = -(~re-!!3e-'/2K'[1 + O(ll)] 

+ O(e-cI2
.,), (3.15) 

f = Wp[l + !/ + O(K4)] 

in this limit, where c is a number greater than unity 
and independent of I{. Equations (3.15) can be proved 
simply and rigorously by employing the asymptotic 
formula alluded to in footnote 18 and the classical 
Lagrange formula for reverting power series. This 
proof is given elsewhere.20 Except for the factor e- l 

in the formula for u in Eqs. (3.15), these equations 
confirm the correctness of the approximate results 
obtained by Landau6 for the zeros closest to the 
imaginary axis in the situation when I{ is a small 
enough positive number. 21 

Let fo(v) be Maxwellian and suppose that I{ > 0 
is so small that s+ and s_ are closer to the imaginary 
axis than all the other zeros of A(s). Furthermore, 
let G(v) be such that get) = oval) as t ~ co, a 
being a positive constant. Then rp(t) damps asymp­
totically with the rate 'Y = lui if and only if (j(s) does 
not vanish at both s+ and S_. 

This assertion is easily proved by using the fact 
that both (j(s) and ~(s) are regular for (j > -a 
under the assumptions of the last paragraph, by 
exploiting the simple nature of the zeros 8, in the 
Maxwellian case, and by applying the above defini­
tion of asymptotic damping rates. 

IV. STABILITY IN THE LINEAR THEORY 

In this section, we shall be interested in the non­
negative quantities 

W,,(t) == [Iv IG(v, t)I" dv JIP, (4.1) 

20 See A. W. Saenz, "Rigorous Treatment of the Propaga­
tion and Damping of Small-Amplitude Plasma Waves In an 
Initially Maxwellian Plasma," NRL Report 6125, August 
1964. ' 

21 '.Fhat the factor e- t nee?s to be inserted in the pertinent 
dampIng formula of Landau IS, of course, well known heuristi­
cally. See, for example, A. G. Sitenko and K. N. Stepanov, 
~vlet Phys.-JETP 4, 512 (1957) [po 520J and the reference 
In ~ootI;lOte 17 [Eq. (6.3)J. We are not a?Vare. of any rigorous 
derIvatIOn of (3.15) outSIde of the one CIted In the preceding 
footnote. 
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where G(v, t) fulfills the conditions of Problem A 
and where p is an appropriate positive number. 

An attractive feature of the W,,(t) as criteria of 
stability and instability is that each W,,(t) is small 
or large, speaking crudely, when G(v, t) is small or 
large respectively. In particular, it is plain that 
W,,(t) = 0 for some t if and only if G(v, t) = 0 
a.e. on V for that t. 

From the standpoint of the present work, W 1(t) 
has a significant advantage over the W,,(t) with 
p ~ 1 for use in such criteria. In fact, one sees from 
(2.19) and (4.1) that W 1(t) exists and is finite for 
each t ;::: 0 under the basic integrability conditions 
(2.12) underlying our investigation. However, the 
W,,(t) with p ~ 1 do not exist in general under these 
conditions alone. 

For a given p, we shall say that an undisturbed 
distribution fo(v) is stable (unstable) in the W,,(t) 
sense with respect to initial perturbations G(v) of 
a given class if, for that p, W,,(t) is bounded (un­
bounded) as t ---4 co for all (some) G(v) of that class. 

Backus3 has employed the nonnegative quantity 

A(t) == i: Ii: i: G(v, t) dv dwl du (4.2) 

in his studies of stability in the linear theory. We 
shall speak of stability (instability) in the A(t) sense 
if the definition of stability in the previous paragraph 
holds in terms of A (t), rather than in terms of W,,(t). 
Notice that stability in the sense of W 1 (t) implies 
stability in that of A(t), while the converse statement 
obtains for instability in these two senses. The last 
two assertions follow from the fact that, in partic­
ular for t ;::: 0, 

(4.3) 

which in turn results from (4.1), (4.2), and Fubini's 
theorem. 

In a number of cases, the determination of the 
boundedness or unboundedness of W,,(t) as t ---4 co 

for p > 1 is no more difficult to study than the 
corresponding problem for p = 1. On the other 
hand, the methods of this section are inapplicable 
in the range p < 1. 22 

Before embarking on the study of the long-time 
properties of the W,,(t) with p ;::: 1 on the basis of 
the corresponding properties of ep(t), we need a 
generalization of (2.12). This generalization is that 

22 The restriction to functions W,,(t) with p ~ 1 in this 
section arises because the Minkowski inequality, which is of 
basic importance in the arguments of this section, is not 
applicable to the case p < 1. 

there exists a constant r ;::: 1 such that23 

[Iv IG(v)I" dv JIP = G" < co, 

[Iv IH(v) I" dv J/" = H" < co, (4.4) 

1 :::; p :::; r. 

Employing (2.3a), (4.1), (4.4), and Minkowski's 
inequality, one finds that 

W,,(t) :::; G" + [Iv IH(V) { epCt')eikut
' dt,l" dv J/" 

:::; G" + H" { lepCt') I dt' (4.5) 

over the range of p in (4.4), whenever t ;::: O. Using 
the last inequality (4.5), one finds that W,,(t) < co 

over this range of p for each t ;::: 0, a straightforward 
generalization of the parallel result for W 1 (t) found 
earlier. 

The conditions (4.4), not stated explicitly in 
Theorems 4.1, 4.3, and 4.4 below, should be under­
stood, nevertheless, to form part of the respective 
hypotheses of these three theorems. Henceforth, we 
shall usually not state the range of the subscripts p, 
but, when this omission occurs, it should be understood 
that 1 :::; p :::; r. 

Sufficient conditions for stability are furnished by 

Theorem 4.1. Let get) E E(a) and let h(t) E E(b) 
for some a > 0 and some b > O. Let y(s)/I1(s) be 
analytic for (J ;::: 0; for example, let l1(s) ~ 0 for 
(J ;::: O. Then W,,(t) is bounded as t ---4 co. 

Proof: By arguments parallel to ones used in the 
sufficiency proof of Theorem 3.2, we conclude that 
the hypotheses of the present theorem imply that, 
for t ---4 co, ep(t) - get) is given by the right-hand 
side of (3.12), in terms of an appropriate p > O. 
Hence ep(t) - get) is a continuous function of t (t ;::: 0) 
which is of negative exponential order for t ---4 co 

and hence is in Ll (0, co). Since get) E Ll (0, co) 
whenever get) E E(a) for an a > 0, we thus see 
that ep(t) E Ll (0, co) if the conditions of the theorem 
are obeyed. This integrability property of ep(t) and 
(4.5) imply that W,,(t) is bounded as t ---4 co if these 
conditions are satisfied. 

Of the many examples of initial distributions such 
that I1(s) ~ 0 for (J ;::: 0 and such that h(t) E E(b) 

23 Notice that the existence of an r ~ 1 such that G(v) and 
H(v) obey (4.4) is equivalent to the integrability of IG(v)I" 
and IH(v)/" over V for p = 1 and p = r, by virtue of an ele­
mentary theorem of integration theory. 
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for some b > 0, the most important is the Max­
wellian one, in which case H(v) obeys the pertinent 
condition (4.4) in the range 0 < p < ~. We may 
thus apply Theorem 4.1 to initially Maxwellian 
plasmas, drawing the conclusion that such plasmas 
are stable in the W,,(t) sense (1 :s; p < ~) with re­
spect to perturbations for which get) E E(a) for an 
a> O. 

The reader is referred to the Appendix for examples 
of functions fo(v) illustrating Theorems 4.2, 4.3, and 
4.4 below. Examples of functions G(v) illustrating 
the theorems of this section are given in the para­
graphs containing Eqs. (4.26) and (4.27). The con­
struction of a more comprehensive list of such 
examples is left to the reader. 

Our second theorem provides sufficient conditions 
for instability. 

Theorem 4.2. Let Mv) obey the second inequality 
(2.12) and let it possess one of the properties (i) or (ii), 
defined as follows: (i) a(s) has at least one zero in 
the half-plane (j > 0; (ii) h(t) E E(b) for some b > 0, 
a(s) ~ 0 if (j > 0, and a(s) has at least one zero 
with n, ~ 2 on the line (j = O. Let G(v) obey the 
first inequality (2.12) and, moreover, let it be such that 
Pi(t) ¢ 0 for some s, in the half-plane (j > 0 when 
property (i) holds, or such that get) E E(a) for some 
a > 0 and O(s,) ~ 0 for some s, with n, ~ 2 on the 
line (j = 0 when (ii) obtains. Then there exist non­
negative constants A and p. such that rXe-~'A(t), and 
therefore also rAe-~IW1(t), is unbounded as t ~ ~. 
If property (i) [(ii)] holds, then A ~ 0 (~ 1) and 
p.>O(=O). 

For each given pair of functions fo(v) and G(v) 
which, outside of satisfying all of the respective re­
quirements of the last paragraph, obey (4.4) for an 
r > 1, there are two constants A and p. with the 
following properties. These two constants have all of 
the respective properties mentioned in that paragraph 
and in addition they are such that, for all p fulfilling 
the inequality 1 < p ~ r, r).e-~tW,,(t) is unbounded 
as t ~ ~. 

Proof: We begin by considering the portion of 
the theorem pertaining to the unboundedness of 
A(t) as t~~. 

Employing Fubini's theorem, (2.8), and (4.3), we 
find for t ~ 0 

A(t) ~ 1'P(t) I· (4.6) 

This inequality plays a major role in proving the 
unboundedness property just alluded to. 

Let Mv) and G(v) satisfy the conditions in the 
first two sentences of the theorem. Then Theorem 

3.1, the elementary fact thatA'."'_l ~O if aJ;ld only if 
O(s,) ~ 0 [we employ this fact only when property 
(ii) obtains], and the boundedness of get) are easily 
seen to imply that there are constants (jo, II, and 
Ai .• having the properties stated below and such 
that 

'P(t) = t' eU"{± Aj .• e'T;t + O(I)} (4.7) 
,-1 

as t ~ ~. When property (i) holds, (jo is a positive 
number equal to the maximum perpendicular dis­
tance from the imaginary axis of the zeros s, in 
the half-plane (j > 0 which have P,(t) ¢ 0; and 
(jo is zero when (ii) obtains; II is a nonnegative integer 
such that II ~ 0 (~ 1) when property (i) [(ii)] is 
present; and T; is the imaginary part of the jth zero 
(j = 1, ... , 1 ~ 1) lying on the line (j = (jo when 
either (i) or (ii) occurs. Finally, the constants Ai .• 
in (4.7) are defined to be zero if II is greate~ than 
or equal to the multiplicity of the corresponding 
zero S; = (jo + iT i of a(s), this definition being 
necessary for the validity of (4.7) because of the 
range of m in (3.7). One finds that not all the 
Ai .• (j = 1, ... , l) are zero in either case (i) or 
case (ii) [It is elementary to show that (4.7) is 
no longer true in general in the stated sense for 
case (ii) if the condition on O(s.) mentioned in the 
theorem is replaced by the weaker condition that 
P,(t) ¢ 0 for some s, on the line (j = 0 with n, ~ 2, 
even if the remaining requirements on fo(v) and 
G(v) invoked above to derive (4.7) are satisfied. 
This breakdown of (4.7) is symptomatic of the fact 
that the assertions of the theorem are generally 
false under these weakened requirements on G(v) 
when property (ii) holds.] 

The sum inside of the curly brackets in (4.7) is 
an almost periodic function of t which does not 
vanish identically when either property (i) or 
property (ii) occurs, by virtue of the last property 
of the Ai .•. Hence there exists a sequence {tn } 

(n = 1, 2, ... ) of real numbers, with tn ~ ~ as 
n ~ co, and a positive number 0 independent of n 
such that 

I ± A; .• e'T;'·1 > 0 > 0 (4.8) ,-1 

for each positive integer n. 24 

24 That the sum inside of the curly brackets in (4.7) is an 
almost periodic function of t follows, for example, from the 
corollary on p. 38 of H. Bohr's Almost Periodic Functions 
(Chel!*la P~blishing Company, New York, 1947). The result 
(4.8) IS entaIled by an elementary property of almost periodic 
functions A(t) ~ 0, which we shall prove here for complete­
ness. For any given real number £ such that Act) ¢ 0 we 
select an • > 0 such that 0 == IAct)1 - • > O. By B~hr's 
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For the functions fo(v) and G(v) under discussion, 
we conclude from (4.6), (4.7), and (4.8), and from 
the stated properties of 0"0 and v, that there exist 
nonnegative constants A and f.J. which possess the 
properties specified in the final sentence of the first 
paragraph of the theorem and which are such that 
t,;-Xe-"'"A(tn ) ~ (X) as n ~ 00. Hence the proof of 
the portion of the theorem referring to A (t) IS 

complete. 
We now investigate the long-time behavior of 

W,,(t) in the as yet unexplored range 1 < p ~ r 
[All of the arguments and equations in this investiga­
tion hold equally well, of course, for 1 ~ p ~ r]. 
In the remainder of the proof of the present theorem, 
fo(v) and G(v) will be supposed to obey the require­
ments laid down in the first sentence of the second 
paragraph of this theorem. 

It is convenient to introduce the notations 

IIF(u) II·" == [i: IF(u) I" du J/P, 

IIF(u)lI!a,bl == [t IF(u) I" du JIP. 
(4.9) 

If fo(v) and G(v) satisfy the last-mentioned condi­
tions, we obtain by reasoning parallel to that used 
in arriving at (4.5) and by employing Fubini's 
theorem: 

(4.10) 

for t 2:: 0, where the function 

1},,(u) == [i: i: IH(v) I" dv dw JIP (4.11) 

is in L,,( - 00, (0) as a consequence of this last 
theorem and of the condition (4.4) on H(v). 

Notice that the trivial case 1}p(u) = ° a.e. for 
lui < (X) cannot occur under the present hypotheses 
on fo(v). For if 1},,(u) had this property, then this 
requirement (4.4) on H(v), (4.11), Fubini's theorem, 
and an elementary property of Lebesgue integrals 
would imply that H(v) = ° a.e. on V. But this 
would mean that Ll(s) would have no zeros, in 
evident contradiction with the occurrence of either 
property (i) or property (ii). Hence 111}"(u)/I,, is 
always finite and positive for the fo(v) obeying such 
hypotheses. 

original definition of almost periodicity, there exists a real 
sequence {Tn( e) len = 1, 2, ... ) of (translati9n) numbers 
tending to infinity as n ---> 00 and such that IA( t + Tn( e» -
A( 01 < e for each positive integer n. Setting tn == l + Tn( e), 
one then finds that IA(tn)1 ~ 5 > 0 for each such n, so that 
(4.8) obtains as stated. 

We can thus choose a finite closed interval I, not 
containing any of the points -T;/k (j = 1, ... , l) 
and such that the integral of 1},,(u) over I is finite 
and positive. Therefore, a simple theorem26 on 
Lebesgue integration allows us to infer the existence 
of a number a which lies in the interior of I and is 
such that //1},,(u)//!a.a+wl is finite and positive for 
each choice of w > 0 for which [a, a + w] C I. 
[Obviously, this finiteness and positiveness hold, a 
fortiori, for all w > 0, since 'I1,,(u) E L,,( - 00, (0), 
but we shall not employ this fact here.] Henceforth, 
this last condition on [a, a + w] will be assumed 
to obtain always, so that none of the points -T;/k 
will lie in [a, a + w]. 

Let us now consider the integral over [0, t] 
occurring in (4.10). From (4.7) and the detailed 
structure of the 0(1) terms therein, we obtain the 
following formula, which holds for each finite t > 0 
and each finite u in case (i), and which holds for 
each such t and each finite u different from all the 
points -T;/kincase (ii): 

it <p(t')e;kut' dt' = eU
" t' 

(4.12) 

If property (i) holds, the function Q(u, t) [whose 
explicit form is immaterial here] is bounded and 
integrable for each t ,e 0 over any finite interval 
on the u axis and 

25 The theorem in question is as follows. Let there exist 
an interval J (finite or infinite) such that the function f(x) of 
the real variable x is integrable over J, the corresponding 
integral over J is positive, and f(x) ~ 0 on J. Then there 
exists an interior point c E J such that 

c+h f c f(x) dx > 0 

for every h > 0 such that [e, e + h] E J. To prove this theo­
rem, suppose that no such e exists. Then, for each interior 
point x E J, there exists a 5(x) > 0 such that 

.H(.) 

f~ fWd~ = o. 
This result and the nonnegativity of f(x) on J imply that 

.+, f. fWd~ = 0 

for every such x and each T E [0, 5(x)]. Setting 

G(x) == f: f(~) d~, 
where a ~ - 00 is the inf of the points of J, we thus see that 
G(x + T) = G(x) for all x and T of this type. Hence the 
right-hand derivative of G(x) vanishes at each interior point 
of J, that is, it vanishes a.e. in J. Now, this right-hand 
derivative is equal to dG(x)/dx whenever the latter exists. 
But, a.e. in J, dG(x)/dx exists and equals f(x), since f(x) is 
integrable over J. Hence f(x) = 0 a.e., which contradicts 
our second hypothesis onf(x) and proves the theorem. 
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lim Q(u, t) = 0 (4.13) 
t~'" 

for any fixed finite u. If property (ii) occurs, Q(u, t) 
has poles at the same values -Tt!k (j = 1,2, ... , l) 
of u as has the sum inside of the curly brackets 
of (4.12). However, when case (ii) obtains, Q(u, t) 
has the above boundedness and integrability prop­
erties for each t ;= 0 over each finite closed interval 
on the u axis not containing any of the points -Tj/k, 
and (4.13) holds in this case for each fixed finite u 
not coinciding with any of the latter points. The 
presence of poles at these points in case (ii) motivated 
our choice of intervals [a, a + w] not containing 
any of these points in this proof, intended to apply 
to cases (i) and (ii). 

Since (4.13) is valid for (i) and (ii) whenever 
u E [a, a + w], we find 

lim l171p(u)Q(u, t)lI!a.a+<'>l 

= 1171,,(u) lim Q(u, t)II!,,·,,+Wl = 0 (4.14) 
t_'" 

in these two cases by dominated convergence. 
To finish the proof of the present theorem, we 

require a result analogous to (4.8). This result is 
that, for each sufficiently small w, there exists a 
sequence {t~(a) I (n = 1, 2, ... ) of real numbers 
t:'(a) ~ co as n ~ co for fixed a which are such that 

I ± [ A+.,~(~jt.~,,) .)]1 > o'(a, w) > 0 (4.15) 
,~l Uo ~ U T, 

for each u E [a, a + w] and each positive integer n. 
Here o'(a, w) is independent of u and n. 

It is easy to show that (4.15) holds on these 
ranges of nand u by exploiting the facts about 
the function L:-1 A; .• e'TI'/[uo +i(ku + T;)] which 
we proceed to state. First, in particular for any 
given u E [a, a + w], this function is an almost 
periodic function of t, which is not identically zero 
because of the circumstance that not all the A; .• 
vanish under the present conditions. Second, as can 
be verified immediately, this function is differenti­
able with respect to u over [a, a + w] for each 
real finite t, the absolute value of the corresponding 
partial derivative being bounded in this range of 
u and t by a finite number independent of u and t. 26 

2. In fact, let A(u, t) be a function with the properties 
enumerated in this paragraph of the text. Consider an arbi­
trary fixed interval [a, a + w], say the interval [a, a + woJ. 
Then !A(u, t) - A(a, O! ~ lu - al K(a, Wo) for every u E 
[a, a + wo] and each real finite t, K(a, wo) being the finite 
number independent of u and t cited in the third sentence of 
that paragraph. Since A(a, t) ~ 0 and since A(a, t) is almost 
periodic in t, we infer from the pertinent result of footnote 24 
that there exists a sequence It.'(a)}, of the type specified 
in the paragraph of the text containing (4.15), such that 

Selecting an w > 0 so small that (4.15) obtains 
in the prescribed sense, we find with the aid of 
(4.12), (4.14), (4.15), and Minkowski's inequality: 

II 
[,., (a) II 

71p(U) 10 'P(t')e
ikU

" dt' I. 

~ II7Ip(U) {,'(a) 'PCt')e ikut ' dt,Wa.a+wl 

~ ea.t"(a)(t:'(a»' 

X {117Ip(U) ± A;.,(,t •. (,,) Illa.a+wI 
;~1 [Uo + ~(ku + T;)] p 

- II7IJu)Q(u, t)ll!a.a+wI} 

~ eao"'(a)(t:'(a»' 

X {o'(a, w) - 0(1) I 117I.cu)II~","+WI ~ 00 (4.16) 

as n ~ 00, since 0' (a, w) 117I,,(u) [I; a." +<.> 1 > 0 for 
such an w. 

Let fo(v) and G(v) be given functions fulfilling 
the conditions of the second paragraph of the the­
orem. Then we conclude from (4.10) and (4.16), 
from the above properties of Uo and p, and from 
our previous discussion of the unboundedness of A (t) 
in the sense of the theorem, that we can choose 
two constants A and p. which are such that r Ae-I"W,,(t) 
is unbounded as t ~ co when 1 < P ~ r and such 
that they possess all the remaining properties enu­
merated in the last paragraph of the theorem. Hence 
our proof of the theorem is complete. 

We now consider the case when all the zeros 
of .l(s) in the half-plane u ~ 0 are both simple and 
purely imaginary. The next two theorems give 
sufficient conditions for stability and instability 
when .l(s) is of this type. 

Theorem 4.3. Let h(t) E E(b) for some b > O. 
Let .l(s) ;= 0 for CT > 0 and let .l(s) have zeros iT j 
(j = 1, ... , q) on the line CT = 0, all of these zeros 
being simple. Moreover, let there exist positive con­
stants r" and ~" such that 

(4.17) 

for almost all u E [a;", ,8;,,] (j = 1, ... , q), where 
a;" == -Tj/k - ~"and ,8;p == -T;/k + ~". Then Wp(t) 
is bounded as t ~ co for all G(v) such that get) E E(a) 
for some a > o. 

!A(a, t.'(a»! > Ii(a) > 0 for each positive integer n. Here 
Ii(a) is a constant independent of n. Now choose a positive 
w < Wo so small that Ii'(a, w) ... o(a) - wK(a, wo) > o. 
For such an w, the inequalities of this footnote imply that 
IA(u,t.'(a»1 > Ii'(a, w) > 0 over the last range of n for each 
u E [a, a + wJ. Hence (4.15) obtains in the desired sense. 
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Proof: Let the hypotheses in the first two sentences 
of the theorem be fulfilled, and let get) have the 
property specified in the theorem, so that get) E 
L1(0, (X». Then Theorem 3.1 and an argument 
similar to one used in the proof of Theorem 4.1 
lead to the result; 

• 
<p(t) = L Aj.oeiT;1 + I/;(t), (4.18) 

i=1 

where I/;(t) E L1(0, (X». 

Let us rewrite (4.5) by means of (4.9), (4.11), 
and Fubini's theorem. If we then substitute (4.18) 
in the inequality obtained in this manner and invoke 
Minkowski's inequality, we find; 

q 

Wp(t) ~ Kp + L IA i.olll'1p(u)A;(u, t)lIp, (4.19) 

where 

1 - eiCT;+kull 
A;(U, t) == + k Tj U 

(4.20) 

and where Kp is a positive constant. 
If (4.17) holds a.e. on [aj", ,sjp] (j = 1, ... , q), 

then one has over this range of j: 

because of (4.20) and elementary inequalities, and 
because '1,,(u) E Lp( - co, (X». 

Inequalities (4.19) and (4.21) imply the bounded­
ness of W,,(t) as t ~ (X). 

Theorem 4.4. Let fo(v) fulfill the conditions in the 
first two sentences of Theorem 4.3. Let G(v) be such 
that get) E E(a) for some a > 0 and that U(iTl) ~ 0 
for some t = 1, ... , q. Moreover, for this same t, 
let the inequality 

'1,,(u) ~ '11" > 0 (4.22) 

hold a.e. on [a,p, ,s,p], '1l" being a number independent 
of u. Then Wp(t) ~ (X) as t ~ (x). 

Proof: Under the present hypotheses, (4.10) and 
reasoning parallel to that used to arrive at (4.19) 
yield: 

W,,(t) ~ II'1p(U) t Ai.oAj(U, t)ll" - Kp. (4.23) 

We choose ~" so small that the intervals [aj", ,sj,,] 
(j = 1, ... , q) are pairwise disjoint. No loss of 
generality is involved in this choice, since if (4.22) 
is satisfied a.e. on a given interval it is also obeyed 
a.e. on any subinterval of the interval in question. 

If (4.22) obtains in the sense of the theorem, 
we find with the aid of Minkowski's inequality, (4.20), 
and elementary estimation procedures: 

II'1p(U) j; Aj.oAj(U, t)llp 

~ 11'1"(U) 1;. Aj.oAj(U, t)11~alP'PlPJ 
~ IA,.ol '1lp IIAl(U, t)lI!a,p'PlpJ 

- 2 t, IAi.ol lI'1p(u)l!!a IP .P;pJ. (4.24) 
j-I Ih - Til - k~pl 

(;"'tJ 

Since I/Tl - Tjl - kt,,1 > 0 for j ~ t, by virtue 
of the pairwise disjointness of the intervals [ajp, ,sjp] 
(j = 1, ... , q), and since 11'1,,(u)lI!a IP •P;pJ < (X) 

under the present hypotheses, the t-independent 
sum over j ~ tin (4.24) is finite. On the other hand, 
the use of (4.20) yields: 

IIAl(U, t)lI!a ,p'PlpJ 

[
t"-I fk~PI lei. - 11" JI/P = - d~ ~ (X) 

k -kEpI ~ 
(4.25) 

as t ~ (X) for any p ~ 1. 
The hypothesis U(iTl) ~ 0 of the theorem implies 

that A"o ~ 0, because of the assumption that all 
the zeros iTj are simple. But if A"o ~ 0 then (4.24) 
and (4.25) imply that the right-hand side of (4.23), 
and therefore Wp(t), tends to infinity as t -+ (X) 

for 1 S p ~ r. 
Recalling a remark in the paragraph preceeding 

Lemma 3.1, it is seen that the functions G(u) 
pertaining to the initial perturbations G(v) to which 
Theorems 4.1 to 4.4 apply need not be particularly 
"smooth," understanding smoothness as referring, 
for instance, to boundedness of function or deriva­
tive for lui < (X) , and that G(u) need not be in 
L 2 ( - (X) , co). This fact underlies our contention 
that, generally speaking, stability or instability in 
the WI (t) or A (t) sense does not imply the existence 
of any of the properties just stated and that, in 
general, stability and instability in the W,,(t) (p > 1) 
sense is independent of certain of the cited smooth­
ness properties. As far as A (t) is concerned, this 
last assertion contradicts the point of view espoused 
by Backus in Sec. VI of Ref. 3 and especially in 
the last paragraph of that reference. 



                                                                                                                                    

ELECTRIC POTENTIAL IN VLASOV THEORY 873 

Our remarks about smoothness, square integra­
bility, and stability will now be restated precisely. 
Let fo(v) be such that (2.12) holds, that h(t) E E(b) 
for some b > 0, and that either one of the cases 
(i) or (ii) of Theorem 4.2 occurs. Then there exists 
an initial perturbation G,(v) with respect to which 
fo(v) is unstable in the sense of A(t), and hence in 
that of W,(t), and whose corresponding function 
G, (u) has analyticity and square integrability prop­
erties in a horizontal strip lu'l < d > 0 which are of 
the same type as (a') and (b') in Sec. III of this paper. 27 

However, and this is an essential point of our 
argument, there also exist initial perturbations G2 (v) 
with respect to which fo(v) is stable in the sense 
of W,(t) and therefore in that of A(t), but whose 
corresponding functions G2 (u), while they are in 
L,( - co, co), have the "pathological" properties 
which we now mention. Namely, there is a G2 (v) 
whose corresponding G2 (u) has the first «I» and 
a G2 (v) whose G2 (u) has the second «II» of the 
following two properties: (I) G2(u) is bounded but 
dG2 (u)/du is unbounded; (II) G2 (u) is unbounded 
and is not in L 2 ( - co, co). Moreover, let there exist 
a constant ro ;::: 1 such that fo(v) fulfills the second 
inequality (4.4) when 1 :::; p :::; ro, outside of ful­
filling the earlier requirements of this paragraph 
concerning h(t) and the occurrence of cases (i) or 
(ii). Then one can find a function G,(v) with the 
stated properties and the additional one that fo(v) 
is unstable in the W,,(t) sense over this range of p. 
One can also find a function G2 (v) having a G2 (u) 
with property (I) and such that any fo(v) of the 
latter type is stable with regard to this G2 (v) in 
the W,,(t) sense over the last range. 

It is easy to discover many functions G, (v) obeying 
the above conditions. For instance, consider the 
function defined by 

(4.26) 

for It I < co, where A and a are constants such that 
A ~ 0 and ex > o. One finds trivially that rMs) ~ 0, 
in particular when u ;::: o. This 01 (t) is the Fourier 
transform, in the sense of (2.10), of a function G,(u) 
which has the properties mentioned in the previous 
paragraph and which is in L,,( - co, co), in particular, 
when 1 :::; p < 00. These integrability properties 
of G,(u) imply that this function can be obtained 
from a G,(v) which satisfies the first inequality (4.4) 
over this range of p. Such a G, (v) possesses all the 

27 Compare the properties of G,(v) mentioned so far in 
the text with analogous results stated in p. 184 and p. 186 
of Ref. 3 in connection with Theorems 1 and 6 of that refer­
ence. 

instability properties and other attributes of the 
function G, (v) whose existence was asserted in the 
last paragraph, as follows from the discussions in 
the present one and from Theorem 4.2. 

To construct examples of functions G2 (v) with 
the cited properties, we start from the fact that 
the condition h(t) E E(b) for some b > 0 entails 
the existence of a positive constant f3 such that 
.1(s) ~ 0 on the line u = -f3. We define 

rMs) = B{ II (8 - sy; l/(s + (3)N, (4.27) 
; 

where B ~ 0, where the product ranges over the 
finite set of zeros S; of .1(s) in the half-plane u > -f3, 
n; being the multiplicity of S; ,and where N is a 
positive integer not smaller than L; n; + 1, the 
range of j in this sum being the same as in the said 
product. Hence rMs)/ .1(s) is certainly regular for 
u ;::: O. Furthermore, U2(S) is the Laplace transform 
of a function 02(t) ¢. 0 which, for 0 :::; t < 00, is of 
the form e- fJ1 X polynomial in t. For - (X) < t < 0 
we define 

(4.28) 

where we choose Of (t) as either C sin 1I"'Yt/[I - 'Y2e] 
or D sin 0 Itl/W, the constants C, D, 1', and 0 being 
nonvanishing, and l' and 0 being real. Direct com­
putation shows that 02(t) is the Fourier transform, 
in the sense last specified, of a function G2 (u) which 
is in L,,(- 00, (0) for 1 :::; p < (X) and p = 1, re­
spectively, depending on whether the first or second 
of these choices of 0' (t) is made, and that such a 
G2(u) has the respective properties (I) and (II) for 
these two choices. The relative "roughness" of such 
functions G2 (u) with respect to G,(u) is due, as the 
reader will easily realize, to our selections of 02(t) for 
negative t, many other selections leading to similar 
results. The stated integrability properties of the two 
functions G2(u) under discussion entail that each of 
these two functions can be obtained from a G2 (v) 
which satisfies the first inequality (4.4) on the same 
range of p for which the said integrability property 
of the corresponding G2 (u) holds. Hence, invoking 
Theorem 4.1 and collecting the relevant results of 
this paragraph, we conclude that such a function 
G2 (v) , whose G2(u) is of type (I) or (II), possesses 
all the stability properties and other attributes 
ascribed in the penultimate paragraph to the func­
tions G2 (v) of that paragraph having a G2 (u) of the 
same type. Our proof of the existence of the desired 
functions G, (v) and G2 (v) is thus complete. 

It is of interest to contrast the theorems of the 
present section with theorems proved by Backus in 



                                                                                                                                    

874 ALBERT W. SAENZ 

Sec. VI of his paper. Our Theorem 4.1 should be 
compared to his Theorems 2 and 4, the first para­
graph of Theorem 4.2 to his Theorems 1 and 5, and 
Theorems 4.3 and 4.4 to his respective Theorems 6 
and 7. In a careful mathematical comparison of the 
theorems of this section with their counterparts of 
Ref. 3, one should bear in mind that it is implicitly 
assumed in that reference that lo(v) is regular enough 
so that the condition cited immediately after Eq. 
(A2) of the Appendix holds, a mild requirement 
which, however, is irrelevant to our studies in the 
present section. The portion of the first paragraph 
of Theorem 4.2 referring to case (i), when suitably 
augmented by examples of the above functions 
G1(v), includes Backus' Theorem 1 as a special case 
if lo(v) is not restricted by this condition. Otherwise, 
this last theorem and these augmented results on 
case (i) are equivalent. The remaining results in 
Theorems 4.1 to 4.4 are neither implied nor do they 
imply their counterparts of Ref. 3, independently 
of the fulfillment of the cited condition. 

The functions G(u) belonging to the G(v) con­
sidered in the theorems of this section are subjected 
to weaker requirements of smoothness, in the pre­
viously stated sense, than the G(v) embraced by 
the greater part of the corresponding theorems of 
Backus. However, exception made of the above 
portion of Theorem 4.1, no inclusion relation exists 
between the classes of functions G(u) obeying the 
hypotheses of Theorems 4.1 to 4.4 and the cor­
responding classes of such functions in Ref. 3. In 
contrast to this situation, and with the exception 
just noted, the functions fo(v) considered in The­
orems 4.1 to 4.4, although very general, are less 
general than their counterparts in this reference 
when the above regularity condition on lo(v) holds, 
no inclusion relation existing otherwise. Notice, in 
particular, that when this condition obtains and 
when h(t) E E(b) for some b > 0, then dlo(u)/du 
possesses analyticity and square-integrability prop­
erties parallel to (a') and (b'), such properties not 
being assumed in Ref. 3. 

Because of the discussions of the last two para­
graphs, the present stability investigation and that 
of Backus are best regarded as complementary. 
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APPENDIX 

Examples of unperturbed distributions fo(v) satis­
fying the hypotheses of Theorems 4.2 to 4.4 are 

given in this appendix. The reader will find no 
difficulty in supplying the computational steps left 
out here for the sake of brevity. 

In what follows, 

fo(u) == L: L: fo(v) dv dw, (AI) 

and the integral of fo(u) over the entire u axis is 
unity because of (2.2). 

1. We begin by giving examples of functions lo(v) 
satisfying the conditions of Theorem 4.2. Consider 
functions lo(v) which obey (4.4) for some r > 1 and 
are regular enough so that 

H(u) = (iw!/k)dlo(u)/du (A2) 

is valid a.e., that is, regular enough so that dlo(u)/du= 
r~", f:", (afo(v)/au)dv dw, a.e. Moreover, the lo(v) of 
interest are such that lo(u) has one of the forms: 

fo(u) = (l/uo)2 0(lul - uo) lui, (A3) 

fo(u) = (4/12/3'nJ)u4e-W', (A4) 

where O(x) == 1(0) if x ~ 0 « 0), and U o and t 

are positive constants. Many such lo(v) can be 
readily constructed. 

For functions fo(v) of this type obeying (A4) , 
one finds that h(t) E E(b) for each b > 0, as in 
the Maxwellian case. Furthermore, the lo(v) of the 
last paragraph have the properties: (a) if (A3) holds, 
A(S) has only the two zeros 

S = ±kuo{exp [(kUO/Wp)2] - 1}-', 

i.e., property (i) is present; (b) if (A4) holds and 
if k = (2tw;/3)!, the only zero of A(S) for u ~ 0 
is a double zero at s = 0, i.e., property (ii) obtains. 
Assertion (a) follows by direct calculation, while 
(b) can be proved by a combination of such a 
procedure with reasoning parallel to that in the 
second proof mentioned in Footnote 18. 

Hence it is plain that the functions fo(v) of the 
class under consideration satisfy the hypotheses in 
both paragraphs of Theorem 4.2, provided only that 
k = (2tw;/3)' when the corresponding functions fo(u) 
have the form (A4). 

2. We now exhibit a function lo(v) fulfilling the 
hypotheses of Theorem 4.3. Let 

fo(v) = fo(u)M(v, w). (A5) 

Here, M(v, w) denotes a nonnegative function which 
is independent of u, M1>(v, w) is integrable over the 
entire vw plane when 1 ~ P ~ r1 for some constant 
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r 1 2:: 1, and the integral of M(v, w) over this plane 
is unity; and 

fo(u) = ;; t~ + (~ - U2)2 + u~ + (~ + U2)2} , (A6) 

U 1 and U 2 being positive constants. Hence this fo(v) 
obeys the second inequality (4.4) over this last range 
of p. 

For the present example, it is found thath(t) E E(b) 
for each b < ku1• We also conclude by direct com~ 
putation in this case that the only zero of ~(8) 
for u 2:: 0 is a simple zero at 8 = 0 when 

Xl = 2-1 {[8x~ + 1]1 - [2x~ + I]} I, 

o < X2 < 1, (A7) 

where Xi == ku./wv (i = 1, 2). 
With the aid of (2.5), (4.11), and (A5) we find 

for lui < co and 1 ::; P ::; r1: 

(A8) 

where Av is a positive constant. But (A6) entails 
that dfo(u)/du is continuous at each finite u and 
vanishes at u = O. By (A8), this implies the existence 
of positive constants r v and tv for each p in the 
last range, such that (4.17) (with T; = 0) is true 
for every lui::; tv' 

Hence the present example satisfies all the hypoth~ 
eses of Theorem 4.3 if (A7) holds. 

3. Finally, we exhibit an fo(v) obeying the condi~ 
tions of Theorem 4.4. Let 

fo(v) == fo(u)M(v, w) + r(u)N(v, w), (A9) 

where io(u) is given by (A6); r(u) is absolutely 
continuous over some finite interval [ - D, D] CD > 
0); there exists a positive constant r' such that 
Idr(u)/dul 2:: r' a.e. on [-D, D], and r(u) E 
Lv( - co, CD) for 1 ::; p ::; r 1 (r1 is the same as in 
Part 2 of this Appendix); N(v, w) ~ 0 over a set 
of positive plane measure in the vw plane, NV(v, w) 
is integrable over this whole plane for p in the last 
range, and the integral of N(v, w) over the plane 
in question vanishes. Furthermore, r(u) and M(v, w) 
are independent of v, wand of u, respectively, and 
are chosen so that fo(v) 2:: O. Since in the present 
example fo(u) > 0 for lui < CD by (A6), it is easy 
to see that there are many functions r(u) and N(v, w) 
with these properties. It should be clear that (A9) 
is consistent with (AI) and that any fo(v) of the 
form (A9) satisfies the second inequality (4.4) over 
the range of p just cited. 

Equation (A2) is easily proved to hold a.e. for 
examples (A5) and (A9). From this fact, it is seen 
that, for given U 1 and U 2 in (A6), these two examples 
have the same h(t) and hence the same ~(8). 

Equations (2.5), (4.11), and (A9), and Minkow~ 
ski's inequality yield a.e. on [-D, D] when 1 ::; p ::; r1 : 

7Jp(u) 2:: Bpr' - Ap Idfo(u)/dul, (AID) 

where Bp is a positive constant. Since dfo(u)/du is 
continuous at each finite u and dfo(O)/du = 0, 
(AID) implies the existence of positive constants 
7Jh> and t; ::; D, such that (4.22) (with 7Jlp = 7J1V) 
holds a.e. on [- t;, t;] over this range of p. 

We thus deduce that the example (A9) satisfies 
the hypotheses of Theorem 4.4 when (A7) obtains. 
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Known results regarding the projection of total spin states from product wavefunctions involving 
spin-! particles are generalized. It is shown that total spin states projected from product wavefunc­
tions involving particles with arbitrary spin, but otherwise restricted to having either maximum or 
minimum z component of spin, are no more complicated in form than for the spin-! case. 

I. INTRODUCTION 

I N recent articlesl
-

3 several investigators have 
reported their findings regarding the projection 

of a total spin state from a product wavefunction 
involving N spin-! particles. Some of the first results 
along these lines were reported in an earlier article 
by Lowdin.4 The use of a projection operator to 
obtain a total spin state is an alternative to the 
procedure of using Clebsch-Gordan (CG) coeffi­
cients to construct such a state, but in addition 
it provides a flexibility characteristic of operator 
techniques that is not shared by the latter method. 

In this paper, the methods of group theory are 
shown to allow a more general, yet simpler treat­
ment of the problem of obtaining a total spin state 
through the use of a projection operator. It is shown 
that total spin states projected from product wave­
functions involving particles with arbitrary spin, but 
otherwise restricted to having either maximum or 
minimum z component of spin, are no more com­
plicated in form than for the spin-! case. The general 
expression for total spin states projected from such 
initial product wavefunctions is obtained in Sec. II. 
In Sec. III the results are specialized to N spin-! 
particles, and the agreement with the results ob­
tained by Sasaki and Ohno,2 and corroborated by 
Smith3 is indicated. 

II. THEORY 

Let the symbol [SI ... s~][ -S~+1 ... -s~+,l rep­
resent the product wavefunction defined by 

[SI ... s~l = ISlsl) ... Is~s~), (1) 

[-S~+1 ... -s~+.l = IS~+I-s~+I) ... ISN-sN), (2) 

where 

JJ. + II = N, (3) 

1 J. K. Percus and A. Rotenberg, J. Math. Phya. 3, 928 
(1962). 

• F. Sasaki and K. Ohno, J. Math. Phys. 4, 1140 (1963). 
3 V. H. Smith, Jr., J. Chem. Phys. 41, 277 (1964). 
• P.-O. Liiwdin, Phys. Rev. 97, 1509 (1955). 

and where each ket Is m) represents a normalized 
single-particle wavefunction, with spin s, and z­
component m. Further, let Sa and Sb be the total 
spin operators acting on the first JJ. particles and 
the second II particles respectively, i.e., 

(4) 

and 
N 

1: S;. (5) 
p+l 

Clearly, 

and 

Sbz[ -S~+1 ... -sNl = -Sb[ -S~+1 ... -sNl, (7) 

where 

(8) 

and 

(9) 
p+l 

Since Sa is the maximum obtainable z component 
of spin for the first JJ. particles (by construction), 
it follows that the state [SI ... sJ must also be 
an eigenstate of S! with maximum possible angular 
momentum, Sa(Sa + 1). A similar argument holds 
for the state [-Sp+l ... -SNJ with respect to the 
operator S!. Therefore, it is useful to represent the 
two wavefunctions by 

and 

[-S~+1 ... -sNl 

in which case, 

(10) 

(11) 

(12) 

876 
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and 

(13) 

The group-theoretic operator, acting in the spin 
space of N particles, that projects out a state belong­
ing to the Mth row of the Sth irreducible representa­
tion of the three-dimensional rotation group IS 

given by5 

2S + 1 J D S ( )*'R OSM = 811"2 j dw MM cxfJ'Y , (14) 

where 

N 

S = So + Sb = LSi, (16) 
1 

and D!cM(Ot{J'Y) is the M, Mth component of the 
Sth irreducible representation of the operator R. 
The integration in (14) extends over the three 
Euler angles specifying the rotation, dw = dOt 
d (cos fJ) d'Y. According to the familiar transformation 
properties of angular momentum states under rota­
tion, the operation of R on the product wavefunc­
tion ISaSa) ISb-Sb) gives 

R ISaSa) ISb - Sb) 

= L D~:s.(cxfJ'Y)D~:-Sb(Ot{J'Y) ISaAa) ISbAb)' (17) 
x.x" 

The extraction of the Euler angle variables as argu­
ments of the D matrices obtained in this manner 
enables the integration indicated in (14) to be per­
formed, giving the result 

ISM S.Sb) = 08.\1" ISaS.) ISb - Sb) 

= L (Sa(S.)Sb(-Sb) IS(M» 
ACI)." 

x (Sa(Aa)Sb(Ab) IS(M» ISaAa) ISbAb), (18) 

where the symbol (jl(m 1)j2(m2)lj(m» is a CG co­
efficient. Owing to a well-known property of CG 
coefficients, the values of Aa and Ab are restricted 
by Aa + Ab = M. Similarly, expression (18) vanishes 
unless the condition M = So - Sb is fulfilled, i.e., 
the initial product wavefunction is composed only 
of those total spin states IS M SaSb) that admit a 
z component of spin M equal to the total z component 
of spin of the initial wavefunction, So - Sb' 

Invoking the orthonormality of the states ISaAa) 
and ISbAb) and the following property of CG co­
efficients, 

• E. P. Wigner, Group Theory (Academic Press Inc., 
New York, 1959), p. 114. 

(19) 

the projected total spin states are found to have the 
following normalization: 

(S' M' SaSb I SM SaSb) 

= OSS'OMM' I(Sa(S.)Sb(-Sb) I S(M)W, (20) 

where the value of the CG coefficient is given 
explicitly by,6 

I(Sa(Sa)Sb(-Sb) I S(M»1 2 
= oeM, So - Sb)(2S + 1) 

(2Sa)! (2Sb)! (21) 
X (S + So + Sb + I)! (So + Sb - S)! 

The individual wavefunctions ISaAa) and ISbAb) 
appearing in (18) are referred to as stretched-case 
wavefunctions owing to the maximal nature of So 
and Sb' According to the results of the appendix 
to this paper, wavefunctions of this type can be 
expressed explicitly in terms of the single-particle 
wavefunctions as follows: 

(22) 

where 

II- ( 2s )' X II +" Is"m,,) , ,,-1 s" m" 
(23) 

and similarly for ISbAb)' Thus, the projected total 
spin states IS M SaSb) are given by the following 
simple expressioJ? in terms of product spin states: 

ISM SaSb) = L C.(SM; SaSb) 
• 

X lSI'" Sp.; Sa - A) ISp.+l ... SN; A - Sb), 

where 

C.(SM; SaSb) 

= (2~ar\2~br\Sa(Sa)Sb(-Sb) I SCM»~ 

(24) 

X (S.(S. - A)Sb(A - Sb) I SCM»~. (25) 

The properties of the coefficients C. are contained 
implicitly in the CG coefficients of expression (25). 
Consequently, many of the properties of the co­
efficients derived by the previous authors specifi­
cally for the spin-! case are both more generally 
valid, and more simply obtained by exploiting the 

6 M. E. Rose, Elementary Theory of Angular Momentum 
(John Wiley & Sons, Inc., New York, 1961), p. 46. 
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known properties of the CG coefficients. For ex­
ample, owing to the property of CG coefficients, 

(26) 

one obtains 

Similarly, from (19) the following orthogonality is 
obtained: 

f: e~a)e~b)Cx(S'M; S.Sb)Cx(SM; S.Sb) 

= ass' I(Sa(S.)Sb(-Sb) I S(M)W. (28) 

Finally, from two recursion relationships for CG 
coefficients given by Rose,7 the following expressions 
can be obtained: 

(2S. - 'A)(2Sb - 'A)Cx+ l (SM; SaSb) 

+ [SaCS. + 1) + Sb(Sb + 1) - S(S + 1) 

- 2(2S. - 'A)(2Sb - 'A)]Cx(SM; S.Sb) 

+ 'A2CX_ l (SM; S.Sb) = 0, 

and 

(2S - l)S(Sa + Sb + S + 2)[(S + 1)2 - kF] 

X Cx(S + 1M; S.Sb) + (2S - 1)(2S + 3) 

X {S(S + 1)(2'A + 1) - (S. + Sb + 1) 

X [S(S + 1) - M 2]ICx(SM; SaSb) 

+ (S + 1)(2S + 3)(S. + Sb - S + 1) 

X (S2 - M 2)CX(S - 1M; S.Sb) = 0, 

where 

M = Sa - Sb' 

Ill. SPIN..1h PARTICLES 

(29) 

(30) 

(31) 

The relationships between our coefficients Cx and 
the coefficients obtained in previous articles2

-
4 for 

spin-t particles are 

Cx(S M; SaSb) = Cs,X (Sasaki-Ohno) 

= Cx(S, M, n) (Smith), 

Cx(S 0; S.Sb) = Cx (Lowdin), 

where 

7 See Ref. 6, p. 222 and p. 224. 

(32) 

(33) 

(34) 

n = tN, 

Sa = ten + M), 

and 

Sb = ten - M). 

(35) 

(36) 

(37) 

Sasaki and Ohn02 and, later, Smitha have obtained 
an expression for Cx[SM; ten + M) ten - M)] 
which involves a single summation over binomial 
coefficients. Their expression is proportional to 
Wigner's explicit forms for the second CG coefficient 
in (25) with the values for S. and Sb given by (36) 
and (37). The first CG coefficient in (25) is given 
by (21) so that even in the more general case the 
coefficients Cx(SM; S.Sb) involve only one summa­
tion over binomial coefficients. 

The further specialization of the results obtained 
in the preceding section to the spin-t case is, of 
course, straightforward, however we give two more 
examples for clarity. For spin-t particles the state 
defined by (23) reduces to 

It ... t; tJoL - 'A) 

L: 0(L: mi, tJoL - 'A) Itml ) ••• Itm~), (38) 
mlo··mP. 

which Smith represents by the symbol 

[crWl = It ... ti tJoL - 'A). (39) 

Finally we note that the recursion relation obtained 
by P.-O. Lowdin for his coefficients Cx is a special 
case of (29) with S. = Sb = tn. 

These examples provide a useful contact with the 
previous papers, and, in addition, they serve to 
emphasize the power of the group-theoretic for­
malism which has been shown in this paper to give 
more general results at no added expense. 

APPENDIX: STRETCHED-CASE WAVEFUNCTIONS 

The CG coefficients are useful for constructing 
a total angular momentum wavefunction from sin­
gle-particle angular momentum states. A state with 
total angular momentum j and z-component m is 
given by 

X (jl(ml + m2)sa(ma) I j2(ml + m2 + m3» ... 

X <j~-2(~ mi)sim~) I j(m» ISlml) ... Is~m~), 
(Al) 

8 See Ref. 6, p. 39. 
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where the Is.m.) are p. single-particle states with 
spin 8i and z-component mi' The intermediate an­
gular momenta ji are free parameters within the re­
strictive properties of the CO coefficients. In general, 
no simplification of (AI) is possible. However, when 

p 

j = LSi, (A2) 
1 

the so-called stretched case, each CO coefficient is 
of the form 
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Conserved Quantities Associated with Symmetry Transformations of Relativistic 
Free-Particle Equations of Motion 

D. M. FRADKIN* 
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(Received 13 November 1964) 

A general technique is presented for associating conservation laws with the symmetry transforma­
tions that leave invariant the relativistic equations of motion for a free particle. These transformations 
may be either continuous with the identity (such as infinitesimal transformations) or discontinuous 
(such as reflections). It is found that for each transformation there exist two classes of conservation 
laws. The number of separate laws within a class depends on the spin of the particle. The particular 
cases of the Dirac equation and Maxwell's equations are investigated in some detail. For the Dirac 
equation, conserved quantities involving discontinuous transformations and also matrix elements 
between particle and antiparticle states are obtained, in addition to the usual conservation laws. 
Application of the general method to Maxwell's equations yields not only the usual conserved quan­
tities and Lipkin's "zilch," but also twenty new gauge--independent conserved quantities and other 
additional integrals associated with discontinuous transformations. 

1. INTRODUCTION 

IT is well known that the invariance of a physical 
system under a given set of symmetry operations 

implies a corresponding set of properties that are 
constants for that system. Inversely, the existence 
of a set of conserved quantities implies associated 
invariance properties of the equations providing the 
underlying mathematical description of the system. 
For a given system, the detailed connection between 
symmetry transformations and conserved quantities 
is usually exhibited l within the Lagrangian form­
.alism. One shows that if the Lagrangian is invariant 
under a symmetry transformation continuous with 
the identity, then an associated quantity is conserved. 

It is possible however, to develop the connection 
between symmetry transformations and conserved 
quantities directly from the equations of motion 

* North Atlantic Treaty Organization Postdoctoral Fellow 
in Science, 1964-65. 

1 See, for example, E. L. Hill, Rev. Mod. Phys. 23, 253 
,(1951 ). 

themselves. In this paper, we follow such a program 
for relativistic free particles. In essence, the equa­
tions of motion are manipulated in such a way that 
a vanishing 4-divergence is produced, o"D" ... = O. 
Then, if the space components vanish at infinity 
fast enough, it follows that there exists a conserved 
quantity I D4 ... dx. 

In order to treat all relativistic particles uniformly, 
we consider their equations of motion in the Pauli­
Fierz-Dirac form. 2 This spinor formulation allows 
us to establish the pertinent conservation theorems 
very directly. A short but sufficient algebra of 
spinors3 and two-by-two matrices is included in the 

2 P. A. M. Dirac, Proc. Roy. Soc. (London) AilS, 447 
(1936); M. Fierz, Helv. Phys. Acta 12, 3 (1939); M. Fierz 
and W. Pauli, Proc. Roy. Soc. (London) A173, 211 (1939). 

a A general review of spinors, in a notation different 
from ours, is given by W. L. Bade and H. Jehle, Rev. Mod. 
Phys. 25, 714 (1953). See also, E. M. Corson, Introduction 
to Tensors, Spinors and Relativistic Wave-Functions (Blackie 
and Son, Ltd., Glasgow, 1953); H. Umezawa, Quantum 
Field Theory (North-Holland Publishing Co., AlllSterdam, 
1956). 
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Field Theory (North-Holland Publishing Co., AlllSterdam, 
1956). 



                                                                                                                                    

880 D. M. FRADKIN 

notation section in order to make the treatment here 
reasonably self-complete. Of course, for a particle 
of specified spin and mass, the spinor formulation 
may be transcribed into a more familiar form, and 
for the cases of the electron (Dirac equation) and 
the photon (Maxwell's equations), we have per­
formed such a transcription. If the reader does not 
care to bother with the general spinor formulation, 
he may go directly to the transcribed formulas. 

It is shown that for each symmetry operation, 
there exist two classes of conserved quantities, the 
number of elements in a class depending on the spin 
of the particle under consideration. Moreover, since 
these classes of conserved quantities are developed 
directly from the equations of motion and not 
through a variational technique via a Lagrangian, 
the present approach provides conserved quantities 
associated with discontinuous symmetry transforma­
tions-such as space reflection. 

For the Dirac equation, there is only one element 
in each of the two classes of conservation laws. One 
class provides the usual conserved field quantities, 
i.e., expectation values of momentum, energy, etc. 
The other class of conserved quantities consists of 
the matrix elements of these generators of infinites­
imal symmetry transformations between the particle 
state and its charge-conjugate (antiparticle) state. 
In addition, conserved quantities for discontinuous 
symmetry operations are obtained which do not 
correspond to usual expectation values or matrix 
elements. 

For the case of Maxwell's equations, we find for 
each class eight conserved elements associated with 
a single symmetry transformation. For one class, 
we obtain vanishing 4-divergences for two different 
4-vectors, and also for a third-rank tensor, antisym­
metric in the two indices left free after the divergence 
contraction. In the other class, we obtain vanishing 
4-divergences for two different symmetric second­
rank tensors. This is indeed a large number of con­
servation laws arising from a single symmetry trans­
formation and naturally necessitates detailed in­
vestigation. Accordingly, each type of conservation 
law is examined in detail for a variety of symmetry 
operations. It is demonstrated how one recovers the 
usual conservation laws, the quantities "zilch" de­
fined by Lipkin,4 twenty new conserved quantities 
for the free electromagnetic field (apparently hith­
erto undetected) that might be called "angular 
zilch," and also conserved quantities associated with 
discontinuous symmetry transformations. 

4 D. M. Lipkin, J. Math. Phys. 5, 696 (1964). 

2. NOTATION AND SPINOR ALGEBRA 

Latin (italic type) indices with the exception 
of i through n, are used as spinor indices and have 
the range 1 to 2; Greek indices range from 1 to 4; 
Latin (italic type) indices i through n range from 
1 to 3. Summation convention on repeated indices 
is employed unless specifically revoked. In any di­
mension, 0 with two subscripts represents the usual 
Kronecker delta (1 if its two subscripts are the same, 
zero otherwise); the general case for a delta with 
two subscripts and two superscripts is defined in 
Eq. (2.3). 

The equations are numbered in a conventional 
way except that sometimes the added designation I 
or II is appended in order to emphasize different 
classes of equations, as explained in the text. The 
symbols A *, At denote the complex conjugate and 
Hermitian conjugate of any quantity A. Also, the 
3-vector cross product is given typically by the 
notation E 1\ B. 

For a discussion of 4-space, we circumvent the 
use of an explicit metric and the distinctions between 
covariant and contravariant indices by taking X4 = ict. 
A contravariant-covariant distinction will only be 
made explicitly for spinors associated with the sym­
bols X and <fl, and for simplicity, will be dealt with 
only in terms of the mechanics of raising spinor 
lower indices. 

Algebra of 2 X 2 Matrices and the Four-Dimensional 
Antisymmetric Tensor 

The four matrices Up are defined as 

(~ ~), (
0 -i) 
i 0' 

(2.1) 

(~ ~). 
These matrices satisfy the relations 

(U:)ab(Up).d = 20ad ObC! (2.2) 

(U2)ab(U2)cd = - o;~ = - (Oa,Obd - OadObc), (2.3) 

Also5 

t 
U pU. = 

t 
Up.UI' = 

(2.4) 

no sum on A, (2.5) 

(2.6) 

(2.7) 

6 The quantities (o"~ ± E"~n) are self and antidualing 
operators for the indic~; a and fJ in the sense that 

(o~~± E"~n) = ±!EaP,..(O~·, ± Ep.n)' 



                                                                                                                                    

CONSERVATION LAWS AND SY MMETRY TRANSFORMATIONS 881 

Op-yU" + (o!~ + E"/ln)U~, (2.8) 

Tr (u:Uv) = Tr (uvu!) = 20~.. (2.9) 

The symbol E~vp .. represents that tensor which is 
antisymmetric to the interchange of any two indices 
and which has the value E1234 = 1. The contraction 
of two of these tensors is given by 

Spinor Algebra 

(2.10) 

(2.11) 

The quantities X and ip (with appropriate indices) 
represent spinors. The dotted spinor index is related 
to the undotted spinor index through conjugation, 
as in the following example: 

(2.12) 

Upper spinor indices are defined in terms of lower 
spinor indices by the operation 

(2.13) 

for each index. The spinor gradient is defined as 
t 

a' r == (u~)sra~ = ad, (2.14) 
a" = air = -(u")rsO,,, 

where a,. = a/aX,.. When the coordinates are sub­
jected to a Lorentz transformation continuous with 
the identity, x~ = a".x" each lower dotted index 
of a spinor transforms according to 

where 

A •• = (eIH).b = (cos !k) 0 •• 

+ ik-I(sin !k)(k'd)ab, 

(2.15) 

(2.16) 

(2.17) 

From these formulas it follows that for space rota­
tions, the 3-vector k is in the direction of the rotation 
axis with magnitude equal to the angle of rotation, 
and that for a pure Lorentz transformation with 
relative velocity v, k is equal to i(v/v) arctanh (v/c). 

3. GENERAL DERIVATION OF 
CONSERVATION LAWS 

The relativistic equations of motion for a free 
particle with intrinsic spin and mass m can be 
studied uniformly in the Pauli-Fierz-Dirac repre-

sentation. In this formalism, the equations of motion 
for the spinor field quantities are given by the 
coupled equations 

(3.1) 

Here K = me/h, and the symbol (v) denotes an 
arbitrary number of dotted and undotted upper and 
lower indices. Of course, the number of indices 
determines the spin of the particle under discussion. 
Substitution of one of the Pauli-Fierz-Dirac equa­
tions into the other gives the relativistic equation 
of motion for each uncoupled field quantity, 

(3.2) 

By direct algebraic manipulation, the following 
theorem relating the symmetry properties of the 
equations of motion to a vanishing 4-divergence is 
easily established: For tran8formations 

x/ex) 

ip' (x) 

x'(x(x), ip(x», 

ip'(x(x), ip(x», (3.3) 

which leave invariant the equation8 of motion [i.e., 
primes may be put on the spinors of Eq. (3.1) while 
leaving their arguments unchanged], one may con­
struct two cla88e8 of vanishing It-divergences, 

ar.[ip::dX~ •• J + x~!,)ip~ •• d = 0, (3.41) 

ar.[x::,)x~'.J + ip~:,Jip;.,)J = O. (3.511) 

That these are indeed 4-divergences is seen imme­
diately from the relation arB = (u;) .. a". 

For massless particles, the equations of motion 
are obtained from Eqs. (3.1) by replacing ip by Kip, 
then letting K2 ~ O. In this formulation, ip represents 
a potential for the field quantities x. The massless 
equations of motion become 

(3.6) 

As before, the following theorem connecting sym­
metry properties and vanishing 4-divergences is 
established: For tran8formations given by Eq. (3.3) 
which leave invariant the equations of motion [Eqs. 
(3.6)J, one may construct two classes of vani8hing 
It.-divergences, 

a;.rip::tlX~.,) + x(:,)ip~ •• d = 0, 

a;.[x;!')xt •• d = o. 
(3.7I) 

(3.8Il) 

The transformations satisfying the premises of the 
preceding theorems are called symmetry transforma-
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tions. If one assumes that the spinor components 
vanish sufficiently rapidly at spatial infinity, Eqs. 
(3.4), (3.5) and Eqs. (3.7), (3.8) yield conservation 
laws for massive and massless particles, respectively, 
that are associated with a particular symmetry trans­
formation. It is seen that there are two classes of 
conservation laws (here designated by the equation 
labeling scheme of I and II) for each symmetry 
transformation and that the number of laws within 
a class is given by the square of the number of 
free indices designated by (v). Also, since the pre­
ceding derivation of the conservation laws does not 
depend on the commutation properties of the spinor 
components, these laws are still valid when the 
theories are second-quantized, as long as the sym­
metry operations are further restricted to leave the 
commutation assignments unchanged. 

We shall now examine these conservation laws 
for the two cases of the electron (Dirac equation) 
and the photon (Maxwell's equations). For these 
cases, the spinor equations will be transcribed into 
equations containing more familiar quantities. 

4. DIRAC EQUATION 

The spinor representation of the free-particle 
Dirac equation is given by the coupled equations 

(4.1) 

The correspondence between this representation and 
the usual one in terms of wavefunctions and four­
by-four matrices is given by the relations 

X2 

[
Xi] 

1j; = :: ' 

C-I = C* = ct, 
(4.2) 

a = (g -~) , {3= (~ ~) , 

1'5 (-~ ~) , (j = p (~p ~) 
or = -~'{3a, 1'. = p, 

Here, C is the charge-conjugate matrix and 1j;oh is 
the charge-conjugate wavefunction. A convenient 
identity that exists in the spinor representation is 

[( (j p - (j:) - 1'5 ( (j" + (j:)] = 2i'Y 4'Y " . (4.3) 

With the aid of the relations given in Eqs. (4.2) 
and (4.3), the spinor equations may be transcribed 
into more familiar ones. The equation of motion, 
given by Eq. (4.1) becomes 

(4.4) 

and the two classes of vanishing 4-divergences given 
by Eqs. (3.4I), (3.5II) become 

dp[(1j;'ch)t'Y4'Yp1j;] = 0, 

d,,[lf'\.'Yp1j;] = o. 
(4.51) 

(4.6II) 

There is only one equation for each class since 
the Dirac equation involves spinors with only one 
index. Also, one can now forget the derivation of 
Eqs. (4.5I), (4.6II) from the Pauli-Fierz-Dirac view­
point and consider directly symmetry transforma­
tions of the wavefunction, 1j;'(x) = 1j;'(1j;(x» which 
leave the Dirac equation [Eq. (4.4)] invariant. 

Transformations which may be applied in Eqs. 
(4.5I), (4.6II) are given in Table I. 

It is seen that for class II, given by Eq. (4.6II), 
we obtain the usual expectation values of the con­
served quantities: probability density (or number 
of particles in the second quantized case), momen-

TABLE I. Wavefunction transformations corresponding to Dirac equation symmetry operations. Both Aa and ~a/l = -~/la 
denote infinitesimals. 

Wavefunction transformation t/t'(x) = 

t/t(x) 
(1 + Aaoa)t/t(x) 

{I + Ha/l[(xao/l - X/lOa) + H'Ya'Y/l - 'Y/l'Ya)] !t/t(x) 
i'Y.t/t( -x*) 

i'Y,C*t/t*( -x*) 
'Y4'Y6C*t/t*(x*) 

(1 - ih"Ep.,p,,'Y.'Ypo.)t/t(x) 

• V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. U. S. 34, 211 (1948). 

Dirac equation symmetry operation 

identity, x; = Xp. 
infinitesimal displacements, x; = Xp. + A" 
infinitesimal Lorentz transf., x; = (0", + ~",)x, 
usual space reflection x; = -x: 
Wigner-Landau combined inversion, x' = -x* 
time inversion, x; = x: "" 
little group transf." 
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tum-€nergy, angular momentum-center of energy, 
and 4-vector polarization6 from the transformations 
generated by the identity. infinitesimal displace­
ments, infinitesimal Lorentz transformations, and 
little group transformations, respectively. Also, we 
obtain conserved quantities from the discontinuous 
transforma tions--space reflection, Wigner-Landau 
combined inversion, and time inversion-which are 
not directly interpretable as expectation values. 

The other class of conservation laws given by 
Eq. (4.51) yields conserved matrix elements of the 
generators of the continuous transformations be­
tween the particle state and the antiparticle (charge­
conjugate) state. A set of conserved quantities 
corresponding to the discontinuous transformations 
is also obtained. 

5. MAXWELL'S EQUATIONS: 
TRANSCRlBED RELATIONS 

The spinor representation of Maxwell's equations 
is given by the coupled equations 

iriX~ = 0, 

ar. <J>'u = ii, 

(5.1) 

(5.2) 

in which the spinor field quantities possess the 
symmetry 

Xi .. = X... (so xi = -xb and <J>'u = <j>'; •• 

The correspondence between this representation 
and the usual one in terms of the antisymmetric 
electromagnetic field tensor F~. and the 4-potential 
A~ is given by the relations 

(5.3) 

One could also write x~ in terms of the space 
rotation 3-vector 1/! = E + '1,13, by using the rela­
tion O'!u.F~. = 20'd1k. However, we shall not use 
the 1/! formalism here since this does not lead to 
manifestly covariant four-dimensional forms. Here, 
the electric and magnetic fields, E and B, are given 
by 

(5.4) 

It is also convenient to introduce the antisymmetric 
electromagnetic dual field tensor F~. defined by 

(5.5) 

8 D. M. Fradkin and R. H. Good, Jr., Rev. Mod. Phys. 
33, 343 (1961). 

The dual tensor F~. has the same reality properties 
as F~. and corresponds to replacing B -+ E, E -+ - B 
in the latter tensor. 

The spinor equations of motion may be transcribed 
into more familiar ones by the following procedure. 
Upon multiplying Eq. (5.1) by 0': and taking the 
trace with the aid of the relations given by Eqs. (2.8) 
and (2.9), one obtains 

i(a~F 1r~) + (a~F~~) = o. (5.6) 

Also, upon multiplying Eq. (5.2) by 0' ;O'p and sub­
sequently taking the trace, one obtains 

+ tE"p~A[(aAA~ - a~AA) - FA~Jl = O. (5.7) 

From a consideration of the reality properties and 
the independence of the symmetric and antisym­
metric parts, one recovers from the preceding two 
equations the usual relations: 

a~F,,~ = 0, (5.8) 

a~F~~ = 0, (5.9) 

Fp" = (apA" - a"Ap), (5.10) 

a~A~ = O. (5.11) 

These are the familiar Maxwell's equations in the 
Lorentz gauge [Eq. (5.11)]. The field equations (5.8) 
and (5.9) may be written in the alternative forms 

iE~.p,,(aAFA") = 0 = (a.F?p + apF~. + a.F~~), (5.12) 

(5.13) 

Now that the spinor equations of motion have 
been transcribed into the familiar ones, it remains 
to transcribe the equations [Eqs. (3.7I) and (3.8II)] 
for the two classes of vanishing 4-divergences for 
each symmetry operation. For the case of Maxwell's 
equations, it is easily shown that these equations 
reduce to 

a~[(O':U ,,0' :O'A)abA~Fp" 

- (O'~O'.O':O'p)abF~"AA] = 0, 

a~[(O':O'PO':O' .. O';)abF; .. Fap] = o. 
(5.141) 

(5.15II) 

Here a and b are free indices. In order to write 
these equations in 4-dimensional form, a trace tech­
nique similar to that used to transcribe the equations 
of motion is employed. Multiplying Eq. (5.141) by 
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u ;up and taking the trace with the aid of Eqs. (2.8), 
its conjugate, and (2.9), one obtains 

{oap[diA{Fxl' - F{pAx)] 

- iOap[dp(A{F~p - F{~Ax)] 

+ dp[Gap,iA', F', A, F)] 

+ dp[!~a~p".Gp .. ,iA ~ F', A, F)]} = 0, 

where 

Ga~.~(A', F', A, F) = [o~~(AW.p + F~pAx) 
+ i~a~x.(A{F~. + F'~~Ax)]. 

(5.161) 

(5.17) 

We note that the tensor G is antisymmetric in the 
indices a and (3, and that an element of it is real 
or imaginary depending on whether the index 4 
occurs an even or odd number of times in a, (3, 
and /1-. Consequently, if Gap .p is real (imaginary) it 
follows ihat ~app"Gp",p is imaginary (real). More­
over, since the symmetric and antisymmetric (with 
respect to the indices a and (3) parts of Eqs. (5.161) 
are completely independent, it follows that 

o.(A{F~p - FLA~) = 0, 

op(A~F~p - F'x~Ax) = 0, 

opGap,p(A', F', A, F) = O. 

(5.181) 

The remaining equation for class II [Eq. (5.1511)] 
is reduced to four-dimensional form by multiplying 
it by u, and taking the trace with the aid of 
Eqs. (2.8), its conjugate, and (2.9). The symmetry 
with respect to /I- and II can be explicitly exhibited 
by noting that since Tr [(u;<T~<T:)(<Tr<T:<T,)] equals 
Tr [(u,U;<Tp)(<T;U,,<T;)], the trace reductions can be 
made with the average of these two expressions. 
The result is 

It is apparent that the second-rank tensors WI'> and 
Z pv are both symmetric in their indices. We also 
find that their tensorial traces are both zero. 

Now that the spinor equations have been com­
pletely transcribed, one may ignore the spinor 
formulation and consider directly the symmetry 
transformations of the field quantities F~.(x) = 
F~,(F(x),A(x»,A~(x) = A~(F(x),A(x»whichleave 
invariant the equations of motion given by Eqs. (5.8) 
to (5.11). Each symmetry transformation gives rise 
to the vanishing 4-divergences displayed in Eqs. 
(5.181) and (5.2211). 

In order to see which of the equations of motion 
are critical for the establishment of the vanishing 
4-divergences, we have actually performed the dif­
ferentiation, using only the antisymmetry of F p , 

and the definition of F;:' in terms of F 1'" but not 
employing the equations of motion. The result is 

diA{Fxl' - F{I'Ax) 

= {A~[dpF~I'] - A~[dI'F{p] 

+ ![(opA~ - o~A~)Fxp 

- F~~(o~A. - OI'AA)]) ' 

o.(A{F~p - F{pA~) 

= {AaopF~~] - A~[d.F{pD] 

+ (i/4)~~pp".[(o.A{ - o~A~)Fp" 

- F~x(opA". - orAp)]} , 

(5.231) 

(5.241) 

OI'Gap,/A', F', A, F) = (O~~{AadpF.p] + Ax[dpF~p]} 
+ i~apx.{AaopF~~] + A~[dpFp~D]} 
+ o~:[(opA~ - oxA~)F.p - F~x(o.Ap - opA.)] 

(5.251) 

[dI'Wpp(F', F)] + i[opZp,(F', F)] = 0, 

where 

WI',(F', F) 

(5.1911) d.WI',(F', F) = {Fp.[oI'F~p] + F;,[dI'FI'P] 

+ F~,[dl'F':;] + F'~[oI'F~p]}, 
oI'Z.,(F', F) = {F,p[oI'F'p~] - F~p[oI'F~p] 

(5.2611) 

== ![(F~pFp. + F:pFpl') + (F'I'~F~, + F'~F~I')] 
= [(F~pFp. + F:pFpp) - HI',F;".F "p], 

ZI',(F', F) == WF'I'~Fp, + F'.~Fpl') 
- (F~pF~. + F:pF~I')]' 

(5.20) 

(5.21) 

Again, from investigation of reality properties, it 
follows that the two bracketed ([ ]) expressions in 
Eq. (5.1911) are independently zero. Consequently, 

dI'WI',(F', F) = 0, 

o.Z.,(F', F) = O. 
(5.2211) 

(5.2711) 

The right-hand sides of the preceding five equations 
are all zero (as we already knew) when the equations 
of motion are employed since then each term in 
square brackets [ ] is zero. However, Ga{J,1' is the 
only quantity that requires the Lorentz condition7 

o~A~ = 0 in order that its 4-divergence be zero. 
The other quantities-the two 4-vectors and the two 
symmetric second-rank tensors-require only two 

7 Hence, we use the symbol G to imply a gauge-dependent 
quantity. 
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TABLE II. Electromagnetic field transformations corresponding to symmetry operations for Maxwell's equations. Both 
Xa and ~"'~ = -~~a denote infinitesimals. 

Field tensor transf., F' ",(x) 

F",(x) 
F",(x) 

(1 + Xau",)F",(x) 

t a"",a,~ + ihp[o.~o~':. + o"",o~~ + o""o~.(x~up - xpu~)]} 
operating on Fa~(x) 

-F:.( -x*) 

F:,(x*) 

Potential transf., A'.(x) = 

A,,(x) + u"y(x) 
A,,(x) 

(1 + X",ua)A.(x) 

t a", + Ha~[ o;! + o",(xau~ - x/lu", )]} 
operating on A ,(x) 

Maxwell's Eqs. 
symm. operation 

gauge transf. 
identity, x~ = x" 
info displ., 

x~ = x" + x" 
info Lorentz 
transf., 
x~ = (0", + ~".)x. 
space reil. (.) 
x~ = -x: 
time invers. (0) 

x~ = x: 
(a) Under the usual assumption that charge is a scalar by these transformations. 

of the remaining equations of motion [Eqs. (5.8) 
to (5.10)] in order that their 4-divergences vanish. 

Symmetry transformations which meet the condi­
tions of our theorems and which may be applied 
in Eqs. (5.181) and (5.22II) are given in Table II. 
A detailed discussion of the associated conserved 
quantities is given in the following sections. 

6. MAXWELL'S EQUATIONS: CLASS I 
CONSERVED QUANTITIES 

To facilitate discussion, we shall define the 4-
vectors 

V,,(A', F', A, F) == A~F~" - F~"A~, (6.1) 

ViA', F', A, F) == A{F~" - F';:'A~. (6.2) 

Consequently, under adequate assumptions concern­
ing asymptotic behavior, the conserved (time-in­
dependent) quantities derivable from the class 1 
equations [Eqs. (5.181)] may be simply written 

J V 4(A', F ' , A, F) dx, J V 4CA', F', A, F) dx, 

J Gail . 4 CA', F', A, F) dx. (6.3) 

We shall refer to the integrands of the preceding 
expressions as densities which correspond to a given 
symmetry transformation. Also, in discussion of a 
particular symmetry transformation, we shall sup­
press the detailed description of the argument and 
simply write Ga~.4(},. .. J, for example, to indicate the 
resulting expression obtained from the symmetry 
transformation associated with an arbitrary infini­
tesimal displacement in the 'Yth direction. Moreover, 
in the case of an infinitesimal transformation, this 
designation will apply only to that part of the trans-

formation which is proportional to the infinitesimal 
(subtracting out the identity transformation). 

Conserved Quantities from the 4-Vector 
V,,(A', F' , A, F) 

From the gauge transformation, we obtain the 
associated density 

V4 (gauge) = (d~g)FM = dk(gFk4). 

Consequently, its integral over all space is zero (be­
cause of the asymptotic behavior assumed for the 
relevant quantities) and no nontrivial conserved ex­
pression is obtained. Also, the identity transforma­
tion gives a density that is identically zero. 

The infinitesimal displacements },.a provide the 
usual conservation laws of momentum and energy. 
Specifically, using Maxwell's equations, it is found 
that 

-2i(E 1\ B); + dk[2A j F k4 - okjFMA~], 

(E2 + B2) + dk[2A4Fk4 + FAkA~]. (6.4) 

Again, by our hypothesis concerning asymptotic be­
havior, the integrals over the 3-divergences vanish 
and we are left with conserved quantities propor­
tional to the usual integrals giving the momentum 
and energy of the electromagnetic field. 

The infinitesimal Lorentz transformations (~ab pre­
multipliers) provide the usual conservation laws of 
angular momentum and center of energy. Specif­
ically, the densities are 

V4(L) = (-2i[x;(E 1\ B)j - xj(E 1\ B).] 

+ dk[2(x.Aj - x jA i)Fk4 + (OikXj - ojkx;)FMA~lI, 

V4(~4j) = ([ -2ix4(E 1\ B)j - xj(E2 + B2)] (6.5) 

+ dk[2(X4A j - XjA4)Fk4 - (OjkX4FM + XjF~k)A~]I· 
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Once more, the 3-space divergences vanish when 
integrated over all space and we are left with the 
usual conservation laws of angular momentum­
center of energy. Here, we note that the usual 
connection between infinitesimal symmetry gen­
erators and conservation laws arises from a class I 
conservation law, in contrast to the Dirac case for 
which the usual connection came from a class II 
conservation law, 

For the space reflection transformation, use of the 
reality properties of the field quantities gives the 
associated conserved quantity 

J [A(-x, 1)·E(x, t) - E(-x, 1)·A(x, I)] dx. (6.6) 

However, x may be changed to - x in the last term 
of this expression, so the above integral becomes 
identically zero and no nontrivial conserved quantity 
is obtained. For time reflection, the associated con­
served quantity may be written 

J [A(x, -t)·E(x, t) + E(x, -/)·A(x, I)] dx, (6.7) 

which is a nontrivial integral of the motion. 

Conserved Quantities from the 4-Vector 
V~(A', F', A, F) 

For the gauge transformation, the identity trans­
formation, the infinitesimal displacements, and the 
infinitesimal Lorentz transformations-for all these 
transformations continuous with the identity-we 
may use Maxwell's equations to show that the asso­
ciated densities 174 are either zero or equal to a 
3-space divergence. Consequently, the integrals of 
these densities over all space yield zero and no new 
(nontrivial) conserved quantities are obtained. 

The space-reflection transformation provides the 
conserved quantity 

2 J A( -x, I) ·B(x, I) dx, 

and the time-reflection transformation provides the 
conserved quantity 

J [A (x , -t).B(x, I) - B(x, -t)·A(x, t)] dx. 

However, using the fact that B = curl A, and that 
surface integrals may be ignored, it is easily shown 
that the space-reflection conserved quantity has the 
value zero. Also, the time-reflection integral may 
be evaluated at t = 0, so we find that this conserved 
quantity is also merely zero. Hence, 174 does not 
provide any nontrivial conserved quantities. 

Conserved Quantities from the Tensor 
Gap.p(A', F', A, F) 

As noted before, the tensor Go.fJ.P (defined by Eq. 
(5.17) is antisymmetric in the indices a and (3, 

and the tensor has a zero 4-divergence a~Go.p.p only 
if the 4-potential satisfies the Lorentz condition 
ahAh = O. In the sense that the Lorentz condition 
is not a necessary or essential feature of electro­
magnetism, also the conservation laws arising from 
the densities Go.fJ.4 are not expected to be a part 
of something actually conserved in nature, but only 
reflect an arbitrary supplementary mathematical 
condition. 

Using Maxwell's equations and ignoring integrals 
over space divergences, we find that the gauge trans­
formation provides the associated conserved quantity 

J G o.p.igauge) dx 

That this is indeed a conserved quantity could be 
seen immediately from the fact that if two quantities 
satisfy the d'Alembertian equation apa~g 
apa~Fo.fJ = 0, then it follows that aA(a~)Fo.p -
g(a,.Fo.p)] = O. Here, g satisfies the d'Alembertian 
equation because of the Lorentz gauge condition. 
We note that this conservation argument based on 
solutions of the d'Alembertian equation applies 
equally well if for g we substitute F hP or AI.. 

The identity transformation, here signified by the 
notation Go.p.4(1), leads to the associated conserved 
quantities 

J G4,..4(1) dx = J [- iA 4E; - (A /\ B)j] dx, (6.9) 

~~k J G;; .4(1) dx 

= J [-i(A /\ E)k - A~k] dx. (6.9) 

The infinitesimal displacements lead to no new 
conserved quantities, since Go.P.4(X,,) = ta"Go.p.4(1). 
Consequently, for space displacements, the asso­
ciated density is a 3-space divergence, and for time 
displacements, the associated conserved quantities 
are zero since these are merely the derivatives with 
respect to time of those conserved quantities given 
in Eqs. (6.9). 

Similarly, the infinitesimal Lorentz transforma­
tions provide no new conserved quantities. The 
density corresponding to ~'P premultipliers is 
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G,,~ .• (~"") = aak[(OpkX~ - o~kxp)Ga~.iI) 

+ (o~.xP - op.x~)GalJ.k(I)l 

+ Hop,x~ - o~.xp)[a).G,,~.).(1)] 

+ t[ o,,"G P~ .• (1) - o~"G per •• (1) 

- o"pG"~ .• (I) + o~pG~" .• (I)]}. (6.10) 

However, a).G,,~.).(I) is zero, the 3-space divergence 
may be ignored, so consequently we are left only 
with densities obtained previously from the identity 
transformation. 

For the space-reflection transformation, we obtain 
the conserved quantities 

J (space) 
tiik Gii .• refl dx 

= 4 J {-i[A( -x, t) 1\ E(x, t)h 

+ A.( -x, t)Bk(x, t) I dX, 

J (space) 
G. i •4 \ refl dx = O. 

(6.11) 

Also, from the time-reflection transformation, we 
obtain the conserved quantities8 

t;2k J Gii .• (t;::t) dx = J {-i[A(x, -t) 1\ E(x, t) 

+ E(x, -t) 1\ A(x, t)h 

+ [A.(x, -t)Bk(x, t) 

- Bk(x, - t)A.(x, t)]) dx = 0, 

J G4i.4(t;~e) dx = J {i[A.(x, -t)Ei(x, t) 

+ Ei(x, -t)A.(x, t)] - [A(x, -t) 1\ B(x, t) 

- B(x, - t) 1\ A(x, t)]; I dx. 

Forms Independent of the 4-Potential 

We have seen that the conserved quantities 

(6.12) 

The answer to the preceding question may be 
obtained by considering an integral expression for 
A in the Coulomb gauge for which div A = O. Since 
div B = 0 and curl A = B, we may write 

1 J 1 A(x, t) = 4- I ' curl B(y, t) dy. 
1/" X - y! 

(6.15) 

Here, the differentiation implied by the curl is with 
respect to the argument y. Substituting this expres­
sion into Eqs. (6.13) and (6.14), we obtain the poten­
tial-free expressions 

J V. dx = -; J J I:X_d~1 [(curl B'(y»·E(x) 

- (curl E'(y».B(x)], (6.16) 

J Y. dx = ~ J J I:X_d~1 [(curl B'(y»·B(x) 

- (curl B'(y»·B(x)] = O. (6.17) 

In obtaining these expressions, we have used the 
fact that surface terms obtained through integration 
by parts may be ignored. Also, since the time vari­
ables in x and yare the same, we have used the 
symmetry in the integrals to interchange x and y. 
It is completely obvious now that J Y. dx (which 
is actually zero) is incapable of providing any non­
trivial conserved quantities-a fact we have noted 
earlier in this section. 

All the usual connections between infinitesimal 
transformations and conserved quantities (e.g., space 
displacement-momentum) arise, as has been demon­
strated, from the symmetry transformations involv­
ing the 4-vector V" = A~F)." - F~.A).. The form 
of the associated conserved quantity displayed in 
Eq. (6.16) is similar to, but not the same as, that 
discussed by Good.9 

7. MAXWELL'S EQUATIONS: CLASS II 
CONSERVED QUANTITmS 

J V. dx = -i J [A'(x) .E(x) 

- E'(x)·A(x)] dx, 

What we have called the class II type conservation 
law involves the symmetric tensors W".(F', F) and 
Z".(F', F) [see Eqs. (5.20), (5.21)]. The corresponding 

(6.13) conserved quantities are 

J Y. dx = i J [A'(x) ·B(x) - B'(x) • A (x) ] dx (6.14) 

do not really depend on the Lorentz gauge, and 
are in fact gauge-independent. Can these expressions 
be written in a form such that the potential A does 
not explicitly appear, but is replaced by expressions 
containing only the field quantities E and B? 

• These expressions may be evaluated at t = 0, since they 
are independent of time. 

J W •• (F', F) dx and J Z •• (F', F) dx. (7.1) 

It is apparent that these quantities are completely 
independent of any gauge condition, since they are 
only functions of the E and B fields. In this section. 
we shall use the same conventions (described at the 
beginning of Sec. 6) to designate a particular sym­
metry transformation as those employed earlier. 

• R. H. Good, Jr., Nuovo Cimento 24, 713 (1962). 
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Conserved Quantities from the Tensor W~,(F', F) 

From the identity transformation (signified by the 
argument J) we obtain the density 

W 4,(I) = -2i8.;(E /\ B); + 8'4(E2 + B2). (7.2) 

Thus, the associated conserved quantities here are 
just the expressions for momentum and energy that 
we had obtained earlier by considering the class I 
quantity V4 • In the earlier case, however, the rele­
vant symmetry transformation was not the identity 
but the infinitesimal displacements. 

Here, the infinitesimal displacements Aa provide 
the density 

W,,(A a ) = taa W 4 ,(I). (7.3) 

Consequently, the conserved quantites associated 
with infinitesimal displacements are trivially zero 
since they are either the integral over a 3-divergence 
or the time derivative of a conserved quantity. 

Also, the infinitesimal Lorentz transformation (~a/l 
premultiplier) gives no new conserved quantities. 
In order to demonstrate this, we write the associated 
density in the form 

W4,(~a/l) = a(8/l4x a - 8a4x/l)[a"w",(l)] 

+ tak [(8/lkx" - 8akx/l)W4 ,(I) 

+ (8 a4x/l - 8/l4x,,)Wk>(I)] 

+ t[8",W/l4(I) - 8/l.Wa4(l)1I. (7.4) 

However, a"W",(I) is zero and we may neglect the 
3-space divergence. Thus, we are left with densities 
already obtained for the identity transformation. 

The space-reflection transformation provides the 
associated conserved quantities 

J W44(s~:~e) dx = J [E(-x, t)·E(x, t) 

- B( -x, t) ·B(x, t)] dx, 
(7.5) 

J W4k(s~:~e) dx = i J [B(x, t) 1\ E( -x, t) 

- B( -x, t) /\ E(x, t)h dx = 0, 

and the time-reflection transformation provides the 
associated conserved quantities8 

J W44(t:t) dx = J [B(x, -t)·B(x, t) 

- E(x, -t)·E(x, t)]dx, 

J W 4k(t:e) dx = i J [E(x, -t) 1\ B(x, t) 

+ B(x, -t) /\ E(x, t)h dx = O. 

(7.6) 

In summary, the only new or nontrivial conserva­
tion laws provided by consideration of the densities 
W4 • are the two expressions obtained from WH for 
the discontinuous space-and time-reflection trans­
formations. 

Conserved Quantities from the Tensor Z/I..(F', F) 

Using the fact that 

(7.7) 

we may easily show that the tensor Z,..,(I) associated 
with the identity transformation is identically zero. 
Thus, for this symmetry transformation, no non­
trivial conservation law is provided. 

For infinitesimal displacements, the associated 
tensor Z/I..(A a ) may be written 

Z.,(A a ) = H8.~8,~ + 8/1.~8,~) 

X [(aaFf,,)Fp~ - (aaFEp)F~~]. (7.8) 

Now for F and FD antisymmetric, the following 
expression is an identity: 

[(aaFf,,)Fp• - (aaFEp)F~.] 

= ({[aaFfp + apF~, + a,F~a]Fp~ 
- [aaF,p + apF a, + aEFpa]F~~ 
+ F~dapFp.] - F a,[apF~.] 

- ap[F~.Fp, - FaEF~. - F,"F~a 

+ iEpa./lF,.F'/l] + a,[FpaF~. - F~aFp.]1 

- ap{(F~EFp. - F~.Fp~) + FE~F~,,1 
+ {F~a(a,Fp.) - Fpa(a,F~.) 

+ iEpa./lap(F~oF'/l)})' (7.9) 

We note that in the first curly bracket { } of the 
preceding expression, each term in square brackets 
is zero because of Maxwell's equation or the defining 
relation of the dual tensor. Also, the expression in 
the second curly bracket is antisymmetric in ~ and '1/. 

Consequently, we may write Z/I.,(A,,) in the alterna­
tive form 

Z~,(Aa) = H8~,8,. + 8~.8,I;)[F~a(aI;Fp~) 

(7.10) 

The motivation for writing Z~.(A,,) in the preced­
ing form is that it may easily be compared with the 
third-rank tensor "zilch" discussed by Lipkin.4 We 
find that 

(7.11) 

Although the relevant tensor is the same, our for-
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mulation has demonstrated that O"Z".(Aa) = 0, while 
Lipkin has shown in detail that OaZ".(Aa) = O. That 
Lipkin's equation is indeed satisfied is obvious from 
the form of Z".(A a ) given by Eq. (7.8), since both 
F and FD satisfy the d' Alembertian equation 
o",o",F = o",o",FD = O. 

Both 4-divergence equations involving Z".(A",) 
(Lipkin's and ours) lead to the same conserved 
quantities. This can be seen in the following way. 
Using Eqs. (7.8), (7.10), and Maxwell's equations, 
we can prove that 

Consequently, the different densities for the two 
types of 4-divergence equations, namely Z4.(A a) and 
Z",.(A4), differ only by a 3-space divergence, so by 
the usual assumptions concerning asymptotic be­
havior, the corresponding conserved quantities are 
the same. 

Explicitly, the densities for the conserved quan­
tities are: 

Z44(A4) = [(04E).B - E'(04B)] 

= -i[B·(curl B) + E·(curl E)], 

Z44(A;) = [(o;E)·B - E·(o;B)] 

= -i[B /\ (o4B) + E /\ (04E»); 

(7.13) 

+ ok(E;Bk - B;Ek), (7.14) 

Z4;(A4) = -i[B /\ (04B) + E /\ (04E»)j, (7.15) 

Z4j(Ai) = i[(o,B) /\ B + (OiE) /\ E]j 

= {O,;[(04B).E - (04E) ·B] 

+ 2[(04E;)B. - Ei(04B ;)] 

- iOk[Ek;n(B.B" + E.En)]}. (7.16) 

To obtain the conserved quantities, we may 
neglect the 3-space divergences (which appear in 
the densities expressed in terms of derivatives with 
respect to time). Consequently, the conserved quant­
ity obtained from Z44(Aj) is the same as that ob­
tained from Z4j(A4). Also, since 

2[(04Ej)B, - E,(04B;)] = {[(04E;)B, - E;(04B,)] 

+ [(04E .)B; - E,(04B ;)] - E'ik04(E /\ Bhl. 

(7.17) 

and the integral over o4(E /\ B) is zero (because 
momentum is conserved), we see from Eq. (7.16) 
that Z4/(A.) gives the same conserved quantity that 

Z4i(Aj) does. Moreover, Z44(A4) equals minus Z4k(Ak) 
(to within a 3-space divergence). Hence, there are 
a total of nine distinceo conserved quantities ob­
tained from the infinitesimal displacements. Re­
cently, these conservation laws for the zilch of the 
electromagnetic field have also been discussed by 
Candlin,11 Kibble,12 and Morgan.12• Here, we see 
how this type of conservation law fits in with the 
general description of relativistic free particles­
specifically, that it is a consequence of an invariance 
property (infinitesimal displacements) within a cer­
tain class of conservation laws. 

For the infinitesimal Lorentz transformations (~"'~ 
premultipliers), the associated tensor Z".(~a~) may 
be written, 

(7.18) 

Consequently, the densities of the associated con­
served quantities are 

Z44(~4k) = {-iX4[B /\ (04B) + E /\ (04E)h 

- Xk[(04E)·B - E· (04B)] 

+ o"[x4(EkB,, - BkE,,)]), (7.19) 

!EijkZ44(~;k) = ({ -ix /\ [B /\ (04B) + E /\ (o4E)]) 

+ Ok[(X /\ E),Bk - (x /\ B),EkJ), (7.20) 

Z4i(~4k) = (iXk[B /\ (04B) + E /\ (04E)], 

+ X4{ O'k[04B).E - (04E).B] 

+ 2[(04E,)Bk - Ek(04B ,)]1 

-iO"[E,,iiX4(B;Bk + E;Ek)J), (7.21) 

!E";kZ4'(~;k) = (iOkEkji[(X /\ B)"B; + (x /\ E)nE;] 

+ E,,;kX;{ Oik[(04B)·E - (04E) ·B] 

+ 2[(04E ,)Bk - Ek(04Bi)]})' (7.22) 

Neglecting the 3-space divergences, the 24 densities 
given by Eqs. (7.19) to (7.22) have the general form 

Z4'(~"'p) = XaZb(Ap) - XpZ4.(Aa), 

it we use those expressions for Z4.(Ap), Z4v(Aa) that 
involve the time derivatives [see Eqs. (7.13) to (7.16)] 
and omit completely the associated 3-space diver-

10 Lipkin refers to ten quantities but, as he also points 
out, only nine of them are independent. 

11 D. J. Candlin, "Analysis of the New Conservation Law 
in Electromagnetic Theory," Nuovo Cimento (to be pub­
lished). 

12 T. W. B. Kibble, "Conservation Laws for Free Fields," 
J. Math. Phys. (to be published). 

12. Footnote added in proof: Another approach to the 
conservation of "zilch" has recently been given by T. A. 
Morgan, J. Math. Phys. S, 1659 (1964). 
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gences. Thus, the densities for the 24 conserved 
quantities (due to Lorentz transformation invar­
iance) are related to the densities of zilch (due to 
displacement invariance) in exactly the same way that 
the densities of angular momentum-center of energy 
(due to Lorentz invariance) are related to the 
densities of momentum-energy (due to displacement 
invariance). Without unduly proliferating the nom­
enclature, one could justifiably call these new con­
served quantities f Z4,(~a~) dx, by the name "angular 
zilch." 

Actually, not all of the 24 conserved quantities 
obtained from the densities displayed in Eqs. (7.19) 
to (7.22) are distinct. There exist the relations; 

[E;;kZ4k(~4i) + hiikZ44(b)] = an[iX4(B,Bn 

+ EiEn) + (x /\ E)iEn - (x /\ B);En], 

~;;kZd~ik) = ian[(B·x)Bn + (E·x)En ] 

+ i(E2 + B2). 

(7.23) 

(7.24) 

Consequently, 20 new distinct conserved quantities 
for the electromagnetic field are obtained from the 
infinitesimal Lorentz transformations. It is believed 
that these conservation laws for" angular zilch" are 
presented here for the first time. 

The space reflection transformation provides the 
associated conserved quantities 

J Z44(s~~e) dx = J [B(-x, t)·E(x, t) 

+ E( -x, t) ·B(x, t)] dx, 

J Z4k(s~:~e) dx = i J [E( -x, t) /\ E(x, t) 

- B( -x, t) /\ B(x, t)]k dx = 0, 

(7.25) 

and the time-reflection transformation provides the 
associated conserved quantities8 

J Z44(t!:;t) dx = - J [B(x, -t)·E(x, t) 

+ E(x, -t)·B(x, t)] dx, (7.26) 

J Z4k(t!::t) dx = i J [B(x, - t) /\ B(x, t) 

- E(x, -t) /\ E(x, t)]k dx = O. 

Thus, two new conservation laws (from Z44) are 
also obtained by considering the discontinuous trans­
formations. 
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To treat many-body systems in the presence of a static potential or problems of highly collective 
spatially inhomogeneous motions such as vortex lines, wavefunctions of a type 

N 
iT = II g(Xi)4>(Xt, •.• , XN) ,-1 

have been proposed. Here 4> is the exact ground state of the homogeneous system and g(x) is a one­
particle state introduced to describe the effect of the spatial inhomogeneity. However, to determine 
g(x) by the variation principle, one needs to know the spatial correlation functions of all orders for the 
homogeneous many-body system. It is shown that the method of point transformations allows one 
to work with qualitatively similar but different states. The description of the system in the presence 
of a static impurity or of a state representing a vortex line in liquid helium requires a knowledge of 
only the average kinetic energy and x-ray scattering factor for homogeneous liquid helium. Both of 
these are available from experiments. The treatment of a recoiling impurity atom, strictly speaking, 
requires a knowledge of the current correlation tensor for the ground state of the homogeneous many­
body system. This term vanishes in the Hartree limit of the theory for bosons. 

1. INTRODUCTION 

ONE important feature of current many-body 
theory is apparent on looking at the problem 

of the effect of a static potential on the properties 
of the system. A typical Hamiltonian is 

N 

H u = H + L U(xi ) 
i=l (1.1) 

p~ 
H = L 2M + L: V(ix, - XiI)· 

1 '\<1 

If U is a finite disturbance, even a knowledge of 
all the stationary states of the homogeneous system 
governed by H is of little value on the analysis of H u 

unless a perturbation treatment of U is valid. If a 
disturbance can be regarded as small, the response 
can be expressed in terms of simple correlation func­
tions that characterize the homogeneous system. We 
are then in the happy position of having nondisturb­
ing probes, as in the theory of x-ray and neutron 
scattering. However, disturbing probes are fre­
quently important, as for example, in the behavior 
of foreign bodies in a many-body system. Here 
it seems to be necessary to develop the theory 
afresh, without reference to the properties of the 
system in absence of the foreign body. In certain 
cases this can actually be done. For example, one 
can make a theoryl of foreign ions in a weakly 

* This work was supported by a grant from the U. S. 
Air Force Office of Scientific Research (AF 176-63). 

t Fulbright Research Scholar, University of Rome, Italy 
(1963-64). 

1 E. P. Gross, Ann. Phys. (N. Y.) 19, 234 (1962). 

interacting boson system based on an extension to 
spatially inhomogeneous states of the Hartree­
Bogolyubov method. This theory parallels the treat­
ment of the isolated weakly interacting boson system 
in spirit, and is systematic in the same sense. How­
ever, in a more realistic situation (liquid helium) 
there is no adequate theory that starts from the 
actual Hamiltonian, and the situation is even worse 
for the foreign-ion problem. 

While this difficulty is perhaps intrinsic insofar 
as one strives for exact theories, one can take another 
point of view. This attitude is to make a reasonable 
but approximate theory of the more complex problem 
(e.g., a foreign particle plus a many-body system), 
in which the quantities of interest depend on prop­
erties of the isolated many-body system. If one is 
lucky, these properties may be available directly 
from experiments. A specific example is Feynman's2 
approach to the excitation spectrum of liquid helium. 
In the simplest theory the wavefunction of an 
excitation is assumed to be the Fourier component 
of the density multiplied by the (unknown) exact 
ground-state wavefunction. The energy estimate 
turns out to involve only the two-body spatial cor­
relation function (or x-ray structure function) which 
can be measured. The limitations as well as the 
possibilities of this type of approach are brought 
out in the improved theory of Feynman and Cohen.3 

When the wavefunction of an excitation is approx-

2 R. P. Feynman, Phys. Rev. 94, 262 (1954). 
3 R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 

(1956). 
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imated by the ground state multiplied by a poly­
nomial in the density Fourier components, the energy 
depends on the three- and four-body spatial cor­
relation functions. This information is not available 
experimentally, and one is forced to make esti­
mates-which while not unreasonable, introduce un­
certainties. And yet this is perhaps the best theory 
that has been possible to date. 

Let us examine what happens if one adopts this 
attitude in other problems. Consider, for example, 
the case of an interacting boson system in the 
presence of a localized static potential U(r). A 
reasonable approximation to the ground state is 

N 

'lr = II g(ri)cf>(x1 , '" ,XN), (1.2) 
i-I 

where cf> is the exact ground state of the system in 
the absence of the potential. The function g(r) tends 
to unity at a sufficient distance from the origin. 
If U(r) has the behavior of a hard core at small 
distances, g(r) can satisfy the boundary conditions 
that it vanish at the edges of the core. One would 
like to calculate the energy with this 'lr and to 
choose g(r) by making the energy a minimum. How­
ever, one immediately encounters the difficulty that 
the energy depends on the spatial correlation func­
tions of all orders. Without further, rather drastic 
approximations, the way is blocked. The situation 
is that when states are of the form 

the energy depends on only two-body correlation 
functions, when 

'lr = L: g(Xi, xj)cf>, 
i<i 

a small number of higher correlation functions enter, 
but that 

brings in all of them. The last form is typical of 
highly collective states, e.g., vortex lines. 

In the present paper, the problem of dealing with 
this type of collective state is attacked by the 
method of point transformations. 4

•
s We introduce 

in place of the particle coordinates Xi new coordinates 
which contain functions f(Xi)' The transformation 
deforms the space in the vicinity of the spatial 
inhomogeneity, but leaves the coordinates unaltered 

'M. Eger and E. P. Gross, Ann. Phys. (N. Y.) 24, 63 
(1963). 

'M. Eger and E. P. Gross, Nuovo Cimento 34,1225 (1964). 

at large distances. This enables us to take account 
of the spatial inhomogeneity induced, for example, 
by a static potential. After transformation, we eval­
uate the expectation value of the energy with a 
wavefunction in the new frame that is the (unknown) 
exact ground state of the homogeneous system. One 
then finds that the energy functional containing f(x) 
depends only on the two-body correlation functions 
and on the expectation value of the kinetic energy 
of the homogeneous system. Both of these quantities 
can be taken from experiment. This procedure is 
equivalent to using the variational principle with a 
trial function in the original frame 

N 

'lr = IT g(x,)cf>(h(x1), ••• ,h(XN)' (1.3) 
i-I 

Here the function hex), as well as g(x), tends to 
unity at large distances. They are both connected 
with f(x) in a precise and specific way. The choice 
amounts to a deformation of the cf> in the vicinity 
of the static potential. .While one can state the 
procedure in this purely variational way, the feature 
that makes the calculation go through simply is 
the specific link between g(x) and hex). This could 
hardly be guessed without the method of coordinate 
transformation. Conversely, a rather drastic approx­
imation to the ground state is thereby implied. One 
indication that the procedure makes some sense lies 
in the fact (of Sec. 3) that it reduces to the Hartree 
theory for weakly interacting bosons. 

The point transformation approach to spatially in­
homogeneous states is very general, and may be used 
to treat systems in the presence of walls, the structure 
of vortex lines, the case of recoiling ions, etc. Since 
we only make use of transformations that are sym­
metrical in the dynamical variables of the many-body 
system, our method is applicable, essentially as it 
stands, to fermions as well as bosons. However, we 
have had in mind the case of liquid helium in de­
veloping the approach, and this bias is reflected in 
the text of the article. In some of these problems 
we encounter expectation values taken with the 
homogeneous ground state that do not seem to be 
obtainable experimentally. For example, in the re­
coiling foreign-ion problem one needs to know the 
single time (two-body) current correlation tensor. 
The situation is then similar to that of the Feynman­
Cohen theory in that some further estimates of these 
quantities are needed. This brings in the attendant 
uncertainty as to how much of the error lies in the 
special form of the trial function. These questions 
are further elaborated in the text. 

In Sec. 2 we find an approximate ground state 
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for a many-body system in the presence of a static 
potential U(x). It is shown that the determination 
of the optimum point transformation requires a 
knowledge of the average kinetic energy and two­
body spatial correlation function for the ground state 
of the many-body system in the absence of the 
impurity. In Sec. 3 it is shown that the theory 
reduces to the Hartree treatment of the static 
potential problem for weakly interacting bosons. 
This treatment corresponds to complete macroscopic 
occupancy of a single one-particle spatially inho­
mogeneous state, and to putting the spatial cor­
relation function equal to a constant. In Sec. 4 the 
generality of the procedure for the treatment of 
collective states is emphasized and is illustrated by 
a sketch of the calculation of the structure of a 
vortex line in liquid helium. In Sec. 5 we study 
the ground state of an impurity atom coupled 
dynamically to a system of interacting particles. 
The energy functional determining the point trans­
formation differs from that of the static potential 
problem in two ways. First the mass M of the 
particle must be replaced by the effective mass 
M* = p,M/(M + p,), where p, is the mass of the 
impurity atom. Second, a new term containing the 
current correlation tensor for the ground state of 
the homogeneous many-body system makes its 
appearance. This quantity does not seem to be 
available from existing experiments. However, it is 
shown that this term vanishes in the Hartree limit 
and it may be permissible to neglect it in fixing 
the point transformation. In Sec. 5, we take up the 
theory of the effective mass of a foreign body. If 
one adopts the general form of the wavefunction 
proposed by Feynman for liquid helium, the point 
transform allows one to fix the undetermined features 
of the theory, i.e., the specification of the spatial 
correlation functions of the ion-boson system. The 
treatment of the problem strictly within the phil­
osophy of the point-transform approach leads to 
some generalizations, but these are mainly merely 
alternative representations of the Feynman theory 
and its obvious extensions. 

2. MANY-BODY SYSTEM IN A 
STATIC POTENTIAL 

Let us consider a many-body system in the pres­
ence of a static potential U(r) localized at the origin. 
The Hamiltonian is 

N p~ N 

H u = tt 2M + ~ Vex, - x;) + t1 U(x,) , (2.1) 

where p, = -iii a/ax,. We introduce the extended 
point transformation 

y~ = x7(1 + f(r,», 

p, = 1,2,3 i = 1,2, ... ,N. (2.2) 

Each particle is transformed separately. This makes 
possible a complete discussion of the inverse trans­
formation, Jacobian, etc. Under the coordinate trans­
formation, a function Q(x 1, ••• , XN) that depends 
only on the coordinates goes over to 

Q'(xh ... , XN) := Q(Yl(X1), ••• , YN(XN». (2.3) 

For example, the transformed static potential is 

[ 
N J' N tt U(x,) = tt U(r, + r;/(r,». (2.4) 

If one deals with potentials that are Fourier analyz­
able, one need only find the transform of 

N 

p(k) = L e,k.x, 

i-I (2.5) 
N 

p(k)' = L eikoYI = L e,koX'e,koX;!(r;). 

i-I i-I 

If this is reanalyzed in x space, we find (0 is the 
quantization volume) 

p(k)' = (1/n) L f3(k, l)p(l), (2.6) 
1 

where 

f3(k:,I) := J e-Hk-l)o"e-ikox!(r) d3x. (2.7) 

The point transformation is a linear transformation 
on the p(k)o In this form 

N 1 tt U(xi )' = 02 fj U( -k)f3(k:, l)p(l) 

U(k:) := J e-,kOxU(x) d3x (2.8) 

U(x) := 1 L e'kOXU(k). 
o k 

The transform of the particle-particle interaction 
energy is 

L V'(x, - Xi) 
i<i 

= L V(lx,(1 + f(ri» - x;(1 + fer;) I) (2.9) 
i<i 

For particle-particle potentials that are Fourier 
analyzable, 

~ V'(x, - x;) = 2~3 k~l' V( -k)f3(k, I) 

X f3(-k, 1') Le-Wo",+l'oXi>. 
i~i 

(2.10) 
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Equations (2.4) and (2.9), or alternatively (2.8) and 
(2.10), give the potential-energy terms of the trans­
formed Hamiltonian. After the kinetic energy is 
transformed (to be accomplished shortly), we are 
of course free to treat the new Hamiltonian as we 
please. However, in the present work we will simply 
evaluate the expectation value of the transformed 
Hamiltonian with the exact ground state of the 
homogeneous many-body system. Then the effect 
of the static potential is carried entirely by the 
point transformation. The expectation value of (2.4) 
plus (2.9) taken with <J>(XI' '" , xN ) is 

(2.11) 

\"here 

(2.12) 

is the two-body correlation function for the ground 
state of the homogeneous boson system. The energy 
functional thus depends on fer) and on the correla­
tion function. With the Fourier transform descrip­
tion the energy is 

(N /fl2) L U(k)fJ(k, 0) 

+ 2~3 L V(k){1(k, 1){1( -k, -1)G(1) 
k .1 

(2.13) 

G(1) = J <J>2 L e;!'(%;-%j) dNx 
,;<, 

G(X) = J <J>2 b O(Xi - Xj - x) dNx. 
'r' 

(2.14) 

One notes in the above, and in subsequent calcula­
tions, that <J> is translationally invariant and is an 
eigenstate of the total momentum with eigenvalue 
zero. To transform the kinetic energy, we must 
return to the basic point transformation, Eq. (2.2). 
The momenta conjugate to Y~ are defined by 

3 

p~ = t L (P; ax;;ay~ + (ax:/ay~)p:), (2.15) 
v=1 

where each particle is transformed separately. One 
finds 

::; = J O(Xi - x) 1 ~ fer) 

{ I' X.Xv } d3 
X 0 •. , - -:;: 1 + (rf)' x. (2.16) 

The Jacobian B = lax~/aY:1 is 

N Nil 
B = IT B1(r i ) = IT (1 + fll + (~f.)'· 

1.=1 t=1 I r 1 1. 

(2.17) 

The transform of the kinetic energy (1/2M) L~-IP~ 
is given by replacing p7 by P7(Pi, Xi)' The significant 
point is that it is the sum of one-body terms so 
that when we take the expectation value with 
<J>(XI ••• XN) the fact that <J> is an eigenfunction 
of the momentum introduces drastic simplifications. 
The calculation is, however, a bit tedious, and we 
do not include it. The results can be written in the 
form 

" p7 ax7 ax; v + = L.... 2".,r -~ -h Pi L W(x i ), 
lV1. aYi aYi i 

(2.18) 

where W(x) is a metric potential energy 

h2 Bt d r2 d 1 
W(x) = 2M 7 dr [1 + (rf)'J2 dr m' (2.19) 

In the expectation value taken with <J>, only the 
zero Fourier component survives and we find 

(2.20) 

To evaluate the expectation value of the first 
term of Eq. (2.18), quadratic in the momenta, we 
note that a<J>/ax: is an eigenfunction of the total 
momentum. Thus only the zero wave vector Fourier 
component ofax~;ay~(ax:/ay~), i.e., its spatial 
average, contributes. Now 

(2.21) 

Hence the expectation value of the first term of 
Eq. (2.18) is 

(2.22) 
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Here a new property of the homogeneous boson 
system enters. It is the expectation value of the 
kinetic energy in the ground state. Collecting terms, 
we have for the ground-state energy in the presence 
of the static impurity, 

s = L(f) I <P L L <P dN 
X + N I W(x) d3x 

12 2M 12 

+ ~ I U(r + rf)47ri
2 

dr 

+ N(N
2
- 1) II V(lxl(1 + fl) 

has a characteristic range large compared to inter­
atomic distances. The second case is when fer) = c/r, 
which is a form that removes the hard-core inter­
action between the impurity and many-body sys­
tem. The domain of IYl - Y21 then coincides with 
that of IXI - xII. 

3. ANALYSIS OF THE APPROXIMATION­
THE HARTREE LIMIT 

We have discussed how the coordinate and position 
operators and the Hamiltonian change under the 
simple transformation. The connection between the 
wavefunctions in the original and transformed 

(2.23) frames is obtained by the requirement that 

This is admittedly a very complicated functional 
of f(x). But the expectation value of the kinetic 
energy can be obtained for the many-body system 
from the cohesive energy, the interparticle potential, 
and correlation energy. With a suitably flexible 
choice of the functional form of f(x) containing 
parameters and using computing machines, it should 
be possible to obtain satisfactory extimates of fer) 
and S. 

In the next section we examine the Hartree limit 
for bosons to show that the preceding theory is 
reasonable. However, one serious shortcoming should 
be pointed out immediately. The last term in the 
expression for S becomes J V(r I2)P2(1, 2) d3Xl d3X2 
in the absence of the static potential, i.e., it is the 
potential contribution to the cohesive energy. Here 
P2 drops to zero for numerous many-body systems 
at interparticle distances where a strong short-range 
repulsion in V(lx l - X2i) sets in. In the presence 
of the static potential, V is modified to V[Yl(Xl) -
Y2(X2)], and the distortion of the space can lead to 
large contributions of repulsive potential energy from 
regions where P2(1, 2) is not zero. Particles lying 
on the same radial line from the origin are partic­
ularly affected. There is, strictly speaking, no way 
to cope with this. It is traceable to the oversimplified 
point transformation used, which in turn is re­
sponsible for the neat form of the result. It would 
certainly be possible to remove the trouble by using 
a more-general point transformation that couples 
the particles. But the theory then becomes un­
wieldy, and it seems preferable to simply cut out 
the dangerous regions in the spatial integral. The 
regions in question seem to be unimportant, but 
a definite uncertainty does creep in. It should be 
noted, however, that the difficulty disappears en­
tirely in two limiting cases. One case is when f(x) 
is slowly varying, i.e., the spatial inhomogeneity 

implies 

H'(p, X)<PE(X) = H(P(P, x), Y(X)<PE(X) 

= E<pE(x). 

(3.1) 

(3.2) 

[We frequently write \{rex) in place of \{r(XI .,. XN)'] 
In words, an eigenfunction \{rE(X) of energy E of 
the original Hamiltonian corresponds to an eigen­
function <PE(X) of the transformed Hamiltonian 
H'(p, x). The connection between the wavefunctions 
IS 

\{rE(Y(X)) = [B(x)]i<PE(X), (3.3) 

This guarantees that the normalization J I\{rE(YW 
X dNy = 1 implies the correct normalization for 
<PE(X), In fact, 

1 = I I\{rE(Y) 12 dNy = I I\{rE(Y(X)) 12 ;~:) 

= I I<PE(XW dNx. (3.4) 

The form of Eq. (3.3) is, however, not the most 
convenient for our purposes since we usually make 
some assumption as to <PE(X), Then we obtain only 
the original wavefunction \{rE in terms of y(x) as 
x ranges over its domain. In examining wavefunc­
tions it is more convenient to think of the inverse 
transform x(y) and to write 

\{r E(Y) = [B(x(Y)]!<PE(X(Y) 

= [A (y)r!<PE(X(Y). (3.5) 

Here Y is merely a set of numbers so that the 
original wavefunction is given directly. A(y) = 
I ay/ax I and satisfies A(y) = I/B(x(y». Thus it can 
be computed from the Jacobian B and the inverse 
transform x(y) once a form has been obtained for 
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~B(X). Alternatively A(y) can be calculated directly 
from x(y) in the same way that B(x) was computed 
from y(x). Thus, if 

x~ = y~(1 + F(R .. », R .. = Iy .. !' 
N 

A(y) = II A1(Yi), (3.6) 

1 1 1 
Al(Y) = (1 + F)2 1 + (RF), == B1(x(y»' 

This representation is most useful in investigating 
the Hartree limit. The energy functional is simply 

h
2 J N a a 

8 = -2M [A(Y)rl~(x(y» L: -;-;; -;-;; 
,-1 vY .. vY .. 

X [A(y)]i~(x(y» dNy + J A~Y) <J>2(X(Y» 

X {~ Ucri) + fu Vcr .. - Y;)} dNy. (3.7) 

The Hartree approximation corresponds to taking 
for ~(x) the noninteracting boson wavefunction 
~(x) = n~NI2. The original wavefunction is then 

N 

'lI(Yl ... YN) = II [A1(Yi)rt, (3.8) 
i-I 

i.e., is given simply by the Jacobian. The energy 
functional then becomes 

This is the energy functional obtained in the treat­
ment1 of the behavior of foreign bodies in a weakly 
interacting gas in Hartree approximation. The func­
tion fey) used there is to be identified with the 
present [A(y)].-l While the boson-boson ground­
state and correlation functions are those of the non­
interacting boson system, the interboson potential 
does play an essential role, along with the external 
potential and the kinetic energy, in determining AI. 
In the Hartree approach 1/ A is directly the expecta­
tion value of the density in the presence of the 
potential. In the more-general theory, the expecta­
tion value of the density is 

n(~) = J 'lI2(y) ~ o(Y. - ~) dNy 

= J ~2(X) ~ o(x,(1 + fi) - 0 dNx 

= ~ J ll(x1 [1 + f(r 1)] - ~) d3XI 

NJ 1 3 N 1 
= g Ilcrl - ~) A1(Yl) d Yl = g AIW' (3.10) 

These results are simple because of the product form 
of the Jacobian. The two-body spatial correlation 
function in the presence of the static potential is 

n2(~' n) = J'lI2(y) fu o(Y. - ~)Ilcrj - n) dNy 

= N(N
2
- 1) J <J>2(x)ll(Yl(X1) - OO(Y2(X2) - n) dNx 

= N(N
2
- 1) J Il(YI(Xl) - OIl(Y2(X2) - n) 

N(N - 1) 1 1 ) 
= 2 A1W Al(n) P2(X1W, x2(n). (3.11) 

Thus we have the Jacobian factors (densities relative 
to the origin of the potential) and the replacement 
of Xl and X2 by the inverse transforms XI(Y1 = ~), 
X2 (Y2 = n) in the interacting boson correlation 
function. 

4. THE STRUCTURE OF A VORTEX LINE 
IN LIQUID 'He 

It is shown in the following sections that the 
application of the point transformation method to 
the problem of a recoiling foreign ion interacting 
with bosons cannot be made without some approx­
imations and modifications of the general theory as 
presented thus far. The theory as it stands can, 
however, be applied directly to the study of the 
vortex line in liquid 4He and, for example, the 
calculation of the radius of such a vortex. 

We proceed now to derive the relevant trans­
formation formulas for this problem, and to write 
down the expression for the ground-state energy in 
terms of the transformation function. To obtain 
explicit and numerical results, it will remain only 
to carry out the indicated variational calculation. 
This last step is postponed, for the time being, until 
computational facilities become available. 

Let 'lI be the ground state of a system of inter­
acting bosons in which a line-vortex excitation 
exists. Our experience with the Hartree-Bogolyubov 
theory in treating this problem for dilute systems6 

suggests that we assume the form 'lI = e+iX",'lI1, 
with 'lI1 real, to bring in the fact that each particle 

6 E. P. Gross, Nuovo Cimento 20, 454 (1961). 
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is given a unit of angular momentum. Then '111 is 
an eigenfunction of 

_N-EL _ K 1-
HI - ?: 2M + ~ Vex; Xi) + 2M ~ ~, (4.1) 

,-1 '<1 , p, 

where p; is the radial distance from the line vortex. 
To take account of the density variation in the core 
of the vortex, we introduce the point transformation, 

y~ = x~(1 + I(p;», J.L = 1,2, 
(4.2) 

y~ = x~, II- = 3. 

The relevant transformation formulas for such 
problems, with cylindrical symmetry, that cor­
respond to Eqs. (2.15)-(2.19) for spherical sym­
metry, are now given. For the momenta, we have 

p~ = 1. f. ( ~ ax~ + ax~ ~) 
• ~ LJ P'!I ~ !I'" p. , .-1 uY~ UYi 

II- = 1,2 
(4.3) 

p~ = p~, II- = 3. 

Similarly, 

ax~ f . 1 
ay~ = c5(x; - x) (1 + I) 

X { " I(p) x~x. } d3 

".' - P 1 + (pf)' x, J.L,1J = 1,2, 
(4.4) 

ax~ ax; 
- = -;-a = "a,PI ay: UYi 

and the Jacobian takes the new form 

N N 1 1 
B = ~ B1(Pi) = 11 1 + I(Pi) [1 + (pd)'] (4.5) 

Thus, the transformation of the kinetic energy is 

L p~ = _1_ L (p(al)2 
2M 2M i • 

+ ~ " { o~, p + x"X. } 
LJ LJ P~ (1 + j)2 -2 X p. 

, ~.Jt-l.2 P 

(4.6) 

where X retains the same form, 

X(p) == L1 + ~pf)'Y - (1 ~ f)2J ' 

while W now becomes 

W( ) - Bt .!i p d_1 
P - p dp [1 + (pf)'Y dp B. (4.7) 

Our problem here is a special case of the Hamil­
tonian (2.1), and except for the fact that we are 

now dealing with only two dimensions, the trans­
formation of the Hamiltonian and the evaluation 
of its average value in the new frame proceeds as 
in Sec. 2. Following the philosophy discussed in the 
introduction, the average value of the transformed 
Hamiltonian is taken with the vortex-free ground 
state of the bosons. The calculation again makes 
crucial use of the translation invariance of eI>h and 
we obtain 

2 

(eI>1 H{ leI» = £ (t)(eI> I L: fk leI» 

N",2 - 27rNt J + n2M W + n U(p + pf)pdp 

+ N(N
2
- 1) J V[x l (1 + II) 

- x2(1 + 12)]P2(1, 2) d3XI d3X2' (4.8) 

where t is the length of the quantization cylinder, 
and 

£(f) = ~ ~ J {[1 + ~pf)']2 + (1 ~ fl}p dp + ~. 
(4.9) 

The third term in (4.8) has the characteristic 
logarithmic dependence on the outer limit of the 
radial integration. Again, only the kinetic energy 
and structure factor of liquid helium are needed, and 
these can be taken from experiments. It should be 
noted that in its present form the energy is written in 
terms of B as well as I. There is, of course, only 
one variational function, since B is a given function 
of Ii however for computational purposes it might 
be advantageous to leave some terms expressed in 
terms of B, to vary both B and I, and to relate 
them by means of a Lagrange multiplier. The best 
form for Eq. (4.8) would depend on the method 
of computation, and therefore we make no attempts 
to achieve further simplifications at this point. 

In Ref. 6 an estimate of the size of the vortex 
was obtained for a dilute system by assuming that 
the density is constant for p smaller than some 
number, a, and has the vortex-free solution outside 
this cylinder. The continuity of '11 then determined 
the core radius a. It was found to be of the order 
of the de Broglie wavelength associated with the 
mean energy of interaction per particle. In our treat­
ment here, the core size is to be found by an examina­
tion of the form of the Jacobian after the variational 
function has been evaluated. Since 

WI = [ ~ B(Pi) T eI> 
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and <J> is the vortex-free solution, the Jacobian, which 
rises to one with increasing p, is, in effect, the 
"core" itself. 

5. GROUND STATE OF RECOILING 
FOREIGN BODY 

We turn now to the applications of the point 
transform method to the treatment of the Hamil­
tonian 

2 N 

H = 'L + L: U(XI - q) 
2J,L i-I 

N 2 
~.J!.L ~ + f::t 2M + (;j V(x. - x;). (5.1) 

Here we have an impurity of mass J,L, coordinates q 
and momenta p interacting dynamically with the 
many body system. The most interesting fact that 
will emerge is that we also need the current correla­
tion functions for the homogeneous boson system 
to fix the point transform. The problem may be 
put in a form resembling that of the previous sec­
tions by introducing the unitary transformation 

(5.2) 

Then 

neity is relative to the instantaneous value of the 
particle coordinate q, the problem is almost the same 
as that treated previously. Consider first the case 
of the ground state K = 0, i.e., total momentum 
is zero. We have 

1 N 1 (1 1) N 2 
H' = 2- L: Pi, P; + 2- - + lilT L: Pi J,L ,,,. p.:L .-1 

N 

+ L: U(X;) + L Vex; - Xi)' (5.7) 
i-I i<i 

If we calculate the ground state by the point trans­
formation method, the last three terms yield the 
energy functional of Eq. (2.23), except for replace­
mentof 11M by the effective mass l/M*= 11M + lip.· 
We need, therefore, consider only the first term. 
It is, however, more convenient to consider the term 
i = j on the same footing as i ~ j. Using the trans­
formation (2.15) and taking the expectation value 
with the exact homogeneous ground state, one finds 
for the new term 

A D 1 1 J .4. ~ ( • ax~ + ax~ .) an = -.- '¥ L.J p. - -p 
2J,L 4 i .; • ay~ ay~' 

q' = UqU- I = q, 
(5.3) We now introduce the local current operator 

X~ = x. + q, P' = P - L: Pi 

H' = UHU- I = H(p'(p, Pi), q'(q), p:(P.), x:(xi , q» 

1 ( N)2 N 2 
= - P - L: Pi + L:.J!.L 

2J,L ;-1 i_1 2M 
N N 

+ L: U(x;) + L: V(Xi - Xi)' (5.4) 
i=1 i<i 

An eigenfunction 'lI(x;, q) of H is related to an 
eigenfunction 'lI/(X;, q) of H' by 

'lI(x~, q) = U-I'lI'(X i , q) = 'lI'(X; - q, q). (5.5) 

However, in H', p is a constant of the motion so 
that'll' (x;, q) has the form 

Q-i e;k'~/(XI _ q). 

Thus 

\}I(X;, q) = Q-t eik'~/(x; - q). (5.6) 

The wavefunctions are eigenstates of the total mo­
mentum (original) p + L: Pi, with eigenvalue hK. 
In H', P has the significance of the total momentum, 
since U(p + L: Pi)U- 1 = p. Thus we may find the 
states of H' with p put equal to the constant hK. 

In this representation, where the spatial inhomoge-

(5.9) 

and write 

(5.10) 

Then 

AE = M2 J ax' m ax~ (n) 
21-' ay" ay" 

x J <J>(x)rml(n)<J>(x) dNx d3~ d3
7j. (5.11) 

Since (ax' jay") (~) is a functional only of I(x) defining 
the point transformation, this shows that the addi­
tional information needed is the static current cor­
relation tensor at different points in space. 

In the Hartree approximation where <J>(x) = Q-NI2, 

the contributions from i ~ j are zero and we find 
only the effective mass correction referred to above. 
The irreducible current correlation function consists 
only of the i ~ j part of rmlCn). We know of no 
practical way of finding the current correlation func-
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tion from experiment. In the application to liquid 
helium, we would therefore have to ignore this term 
in the determination of the point transformation, 
or alternatively to estimate it from some theory of 
homogeneous liquid helium. 

Let us now examine the density correlation func­
tions of the coupled foreign-body-boson system. We 
examine first the two-body correlation function 

n2(Q, x) = I W2(q, Xl, ••• ,XN) 

N 

X o(q - Q) 2: o(x, - X), (5.12) 
i-I 

where W is the ground state of (5.1). Under the 
transformation (5.2) we find 

n2(Q, x) = J W/2(Xl' ••• ,XN) 

X 2: O(Xi + Q - x) dN 
X 

= n(x - Q). 

According to Eq. (3.10), this is 

(N /n)[AI(x - QWI. 

The three-body correlation function is 

na(Q, x, x') 

I W2(q, x)O(q - Q) 

(5.13) 

X 2: o(x, - X)O(Xj - x') d3q dNx 
i<i 

= I W/2 (X) 2:<. o(x, + Q - X)O(Xj + Q - x) aNx . , 
1 1 

= AI(x - Q) AI(x' _ Q) ?l"2(h(X - Q), hex - Q». 

(5.14) 

In the boson correlation function ?l"2, x is to be 
replaced by the inverse transform. Apart from this 
characteristic modification arising from the point 
transform the result for na is similar to a superposi­
tion approximation 

na(Q, x, x') ,....., n2(x, Q)n2(x', Q)?l"2(X, x'). 

In the foreign-body problem n2(x, Q) may be very 
different from ?l"2(X, x'). In general one cannot obtain 
n2(x, Q) from experiment; the point transformation 
reduces its evaluation to properties of the homoge­
neous many-body system. 

6. EFFECTIVE MASS OF A FOREIGN BODY 

In this section we discuss the problem of estimat­
ing the effective mass of foreign bodies in a system 

of interacting bosons. We approach the problem by 
first discussing Feynman's attempe to calculate the 
effective mass of a 3He impurity in liquid 4He. He 
takes the trial function 

WK(q, x) = exp (iK.q) 

X exp [~ t SK(Xi - q) ]Wg{X1 , ••• ,xN ). (6.1) 

Here W g is the exact, translationally invariant ground 
state of the coupled system. W K is an eigenvalue hK. 
The function SK(X - q) represents the velocity 
potential of the boson flow relative to the foreign 
body. The expectation value of the energy with this 
trial function is 

+ ~: II VS(x)VS(x/)Pa(X, x') d3x d3x' . (6.2) 

Here 8(0) is the energy of the state W .. , P2(r) is the 
radial distribution function about q, and P3(X, x') 
is the probability of finding 4He atoms at x and x' 
if the aHe atom is at the origin. Feynman's definitions 
of these functions are 

P2(iX - QI) = (n/N)n2(Q, x) 

Pa(x - Q, x' - Q) = (n/N)lna(x, x', Q) 

+ o(x - x')n2 (x, Q)}. 

(6.3) 

If one knows the distribution functions, the de­
termination of a satisfactory expression for SK(X) 
by functional variation of 8(k) is a technical matter. 
The simple dipolar form S = Az/r3 used by Feynman 
is not essential to the argument. One could examine 
flows with more general angular and radial varia­
tion. 7 Of course, the key feature of the trial function 
is that the velocity potential of each boson is relative 
only to q and does not depend on the positions of 
other bosons. 

The essential difficulties, however, do not seem 
to lie in this domain, for the wavefunction does 
appear to be reasonable at least for neutral im­
purities. It is rather that the correlation functions 

7 G. V. Chester and T. Burke, unpublished thesis of 
Burke at the University of Birmingham (1962). 
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are not known, and rather crude estimates have to 
be made. For example, Feynman assumes that 

na(x, x') r-v n2(r)n2(r'), Q = O. (6.4) 

This is cruder than Kirkwood superposition approx­
imation which states that 

n3 r-v n2(Q, x)n2(Q, X')1l'2(X, x'), (6.5) 

i.e., the first assumption neglects boson-boson cor­
relations. The latter assumption seems to be 
adopted by Feynman and Cohen in a reconsideration 
of the problem. a But the difficulties are not ended 
at this point, for while 1l'2(X, x') can be obtained 
from experiment, this is not possible for n2(Q, x). 
Feynman simply assumes that the radial distribution 
about the foreign body is the same as that about 
a 4He atom. While this crude assumption is not 
hopelessly wrong for a 3He impurity, one has no way 
to estimate n2(q, x) for a more-general foreign body. 

The point transformation may be of use in this 
regard. For if one follows Feynman's theory and 
makes either of the above assumptions on n3 , one 
can calculate n2 (Q, x). If the neglect of the current 
correlation term is legitimate, one obtains n2(Q, x) 
for a wide class of potentials U (x) and masses fJ. 

of the foreign body. This is a particular example 
of the fact, expounded elsewhere,4 that a given point 
transformation is connected simply to the multi­
particle density correlation functions. We note in 
passing that the self-consistent field theory of the 
effective mass of ions in a weakly interacting boson 
system is equivalent to the crudest assumption 
n3(x, x', Q) r-v n2(x - Q)n2(x' - Q). The virtue 
of the Hartree approach is that one actually cal­
culates n2(x - Q). One describes the enhancement 
of the boson density about the ion under the influence 
of the long-range attractive potential counter bal­
anced by the kinetic energy and the boson-boson 
repulsions. This fact, together with the proper veloc­
ity flow pattern which differs markedly from dipolar 
flow, yields a high effective mass for the ion. l Ex­
amination of the energy functional 8, Eq. (2.23), 
shows that we now have an improved description 
of the density about the ion. The empirical spatial 
correlation function for helium enables us to treat 
the energy due to boson-boson repulsion more ad­
equately. The term containing the average kinetic 
energy of liquid 4He takes into account the depletion 
of the macroscopically occupied single-particle state. 

In actual fact, the systematic treatment of the 
effective mass problem dictates not the three-body 
correlation functions given by (6.4) and (6.5) but 
rather that of Eq. (5.14). Apart from this fact, the 

theory is identical with that of Feynman. Suppose 
one writes for the wavefunction of a moving particle 

'I>x(q, Xl •.• XN) = (eik·q/Oi ) 

X exp [i L tK(Xi)]~(Xl' ... ,XN) (6.6) 

in the representation reached after the point trans­
formation. In the original representation this cor­
responds to 

WK(q, Xl, ••. ,XN) = exp (iK·q) 

X exp [i L tK(h(Xi - q»]wg(q, Xl ... XN)' (6.7) 
i 

Wg is the approximate ground state of the coupled 
system given by our theory. Here tK involves the 
inverse point transformation, but can simply be 
identified with Feynman's SK(Xi - q). Hence the 
major feature of the transformation is indeed that 
it determines the impurity-boson correlation func­
tions in all orders. 

It is, however, of some interest to set down the 
results of the point transformation directly. We take 
the wavefunction (6.6) and set S(y) = t(x(y» so 
as to make correspondence with other theories. 
Evaluating the expectation value of (5.7) after per­
forming a coordinate transformation, we find the 
K-dependent terms 

8(K) - 8(0) 

h
2 

N "( --= 2M* 03 b l·l')S(l)S(l')/3(l + 1', 0) 

+ ~ {K2 - ~~ f: K·1 8(l)/3(1, O)} 

+ h
2 

~: L (k.k')8(k)S(k') 
fJ. •• k.k' 

I 

X /3(k, 1)/3(k', -1)0(1). (6.8) 

Here S is proportional to K, and /3(k, 1) and 0(1) 
have been defined in Eqs. (2.7) and (2.14). The form 
corresponding to Eq. (6.2) is 

8(K) - 8(0) = ~2 {K2 ~ 2K f: lS(1)p2(l) 

+ & 8(k)S(k')P3(k, k')} 
+ 2~* & (1.1')S(1)8(1')P2(1 + 1'). (6.9) 

Apart from the effective mass differences, Feynman 
takes PaCk, k') = P2(k)P2(k') = O(k)O(k'). The 
point transformation approximation is 

PaCk, k') --t t ~ /3(k, 1)/3(k', -1)0(1) (6.10) 
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AIl of the work of this section is concerned with 
situations where wavefunctions like (1.2) are indeed 
reasonable. These wavefunctions imply free mobility 
of the bosons throughout all space. This is very 
likely the case for a vortex line. However, Atkins has 
suggested8 that the actual situation when a foreign 
ion is present in liquid helium is very different. 
He pictures the ion as surrounded by a large number 
of helium atoms bound to form a solid-like structure, 
with little spatial mobility for the bound atoms. 
Outside of the droplet, there is free mobility; we 
feel that Atkins' picture is substantially correct and 
that the work of this paper and of Ref. 1 is directly 
relevant for the fluid outside the droplet. It is, in 
fact, possible to adapt the approach outlined here 
to fit Atkins' idea. However, this requires a more 
detailed description in microscopic terms of the 
solid-like droplet, and is thus nontrivial from a 
practical point of view. 

7. SUMMARY 

It is clear that the coordinate transformation 
method makes it possible to treat a large number 
of spatially inhomogeneous collective states in an 
interacting boson system. In the Hartree approxima­
tion the states have the form 

N 

'l.i"(x1 , ••• ,XN) = II g(x.), 
i-I 

where g(x) is in general a complex one-particle state. 

8 K. R. Atkins, Phys. Rev. 116, 1339 (1959). 

g(x) describes the space variation in the velocity 
and density fields. It is determined 9 by the counter­
play of the kinetic energy and of the boson-boson 
repulsions. The real part, i.e., the density, tends to 
unity at large distances, where the state is that of 
an ideal Bose gas. One is then tempted to describe 
the collective state in liquid helium as 

N 

'It = II g(x,)<I>(x1 ••• XN) 
,-1 

in order to correct the asymptotic behavior. The 
remarks in the introduction are now relevant, i.e., 
it is very difficult to work with this wavefunction. 
However, a point transformation in which each 
particle is transformed separately can be computed 
exactly. The Jacobian of the transformation brings 
in the spatially inhomogeneous factor IIf-l g(x,) 
and there are accompanying shifts in the coor­
dinates of <1>. 
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The purpose of this paper is to propose a definition of multipole structure of gravitational sources 
in terms of the characteristic initial data for asymptotic solutions of the field equations. This de­
finition is based upon a detailed study of the corresponding data for the linearized equations and 
upon the close analogy between the Maxwell and the linearized gravitational fields. 

I T is well known that in linear field theories it is 
possible to obtain solutions of the equations in 

a source-free region of space in terms of a distant 
source distribution. (Frequently, instead of a source 
distribution, it is useful to use the equivalent multi­
pole moments of the source.) For example, in 
Maxwell theory, the electric and magnetic fields 
can be written as integrals of the retarded (or 
advanced) charge and current densities, or equiv­
alently they can be written as a series over the 
moments of the densities. However when we come 
to a nonlinear theory, as the Einstein theory of 
gravitation, results of this type have so far been 
impossible to derive. This is due essentially to the 
extreme difficulties inherent in the nonlinearity of 
the equations. The situation is actually worse than 
this; it also has so far been impossible to give a 
method for systematically generating exact empty­
space solutions, even forgetting about the relation 
of solution to source, except in a few cases with 
special properties (symmetries,1-3 etc.). 

Nevertheless a great deal of progress has been 
made in the past few years in a slightly different 
direction. Though physically interesting exact solu­
tions have not been forthcoming in any abundance, 
methods have been developed to yield interesting 
asymptotically (i.e., for large distances from a 
source) exact solutions.4

-
7 These methods, which 

are intrinsically tied to null or characteristic surfaces 
and the initial data given on these surfaces, are of 
sufficient generality that they very likely yield all 
solutions which are asymptotically flat. The main 
purpose of this paper is to show how to give a 

* Supported in part by Aerospace Research Labs., Office 
of Aerospace Research, U. S. Air Force. 

1 A. Taub. Ann. Math. 53, 472 (1951). 
2 B. K. Harrison, Phys. Rev. 116, 1285 (1959). 
3 I. Robinson and A. Trautman, Proc. Roy. Soc. (London) 

A265, 463 (1962). 
4 H. Bondi, M. van der Burg, and A. Metzner, Proc. Roy. 

physical interpretation to a large class of these 
asymptotic solutions or equivalently how to give 
the interpretation to the initial null surface data 
which gives rise to these solutions; i.e., we propose 
a method for identifying the moments of the sources 
from a study of the asymptotic fields. We rely 
heavily on the notation and results of two earlier 
papers and refer to them as Np6 and NU. 7 

Though, as we have said, the prime purpose of 
this paper is a study of the gravitational field, a 
secondary purpose is a study of a Maxwell field 
and its analogy to the gravitational field. The 
examination of the Maxwell field will serve several 
functions: (a) it is of intrinsic interest in itself to 
see and study a new formulation of Maxwell's 
equations, (b) pedagogically it will aid in the pre­
sentation of the analogous results for the gravita­
tional field, and (c) the remarkable analogy (to be 
shown) between the two fields indicates the direction 
for further investigation in the more complicated 
gravitational theory. 

The paper is divided into two main sections; one 
on the Maxwell field, the other on the gravitational 
field. In Sec. lA, we present Maxwell's equations 
in the tetrad, spin-coefficient formalism. In Sec. IB 
we analyze the algebra of the field. In Sec. Ie we 
study the null surface data and the solutions of 
Maxwell's equations. In Sec. ID we give a physical 
meaning to the data and the associated solutions. 
In Sec. II exactly the same things are done, but 
this time for the linearized gravitational field, the 
results then being extrapolated to the exact theory. 
In the Appendix, we show the relationship in the 
linearized theory of gravity between the sources and 
the fields. 

I. MAXWELL THEORY 

A. Field Equations 
Soc. (London) A269, 21 (1962). 

• R. K. Sachs, Proc. Roy. Soc. (London) A270, 103 (1962). We briefly summarize in this section the spin-
G E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). 
7 E. Newman and T. Unti, J. Math. Phys. 3, 891 (1962). coefficient formalism for the Maxwell field [see (NP) 

902 



                                                                                                                                    

STRUCTURE OF GRAVITATIONAL SOURCES 903 

for details]. In Minkowski space we introduce four 
linearly independent vectors; two, l~ and n~, are null 
with l"l~ = n"n" = 0 and l"n~ = 1, the other two, 
m~ and m", are also null but in addition are complex 
with m"m" = m"m" = 0, m"m" = -1, and m"l" = 
m"n~ = O. m" can be written as m" = (a P + ib")/V2, 
a" and b" being unit spacelike vectors. m" is the 
complex conjugate of m~. Instead of the Maxwell 
field tensor F"p, we introduce as our field variables 
the tetrad components of F". by the following 
definitions: 

(1.1) 

The six real components of F", are replaced by the 
three complex 4>'s. In terms of these new variables, 
the Maxwell equations are 

D4>, - b4>o = (7r - 2a)4>0 + 2p4>, - K4>2, (1.2) 

where 

and 

7(' = -n""m"r, 

p = l,,;,m~m', 

X -~ -p = -n~;pm m, 

/-I = -~ . -n,,;.m m , 

T = l.;,m~nP , 

-" . II = -n.;,m n , 

D = l"a/ax" , 

o = m"a/ax~, 

b = m~a/ax", 

.1 = n~a/ax~, 

(1.4) 

(1.5) 

(1.6a) 

(I.6b) 

Before these equations can be solved, a choice must 
be made for the tetrad vectors as well as the coor­
dinate system in which these vectors will be rep­
resented. However before this is done, we will discuss 
the freedom in the 4>'s that results from the freedom 
in the tetrad system. 

B. Tetrad Rotation and the Algebra of the ell's 

The vectors l", n~, m", and m~ (at each point 
in space) are defined by their "orthogonality" condi­
tions only up to the six-parameter restricted Lorentz 
group. These transformations can be written in the 
following way: 

(a) l" = lP, 

(1.7) 

which are the so-called two-parameter null rotations 
around lP (a is an arbitrary complex function); 

(b) 

(1.8) 

which are the ordinary Lorentz transformations in 
the l", n" plane and a spatial rotation in the m", m" 
plane (X and cp are real functions) ; 

(1.9) 

which are similar to (a). 
It is easily calculated that under these transforma­

tions the 4>'s transform in the following fashion: 

(a) 

(b) 

(c) 

<il, = 4>" 

<il2 = X- l e- i "4>2; 

<ilo = 4>0 + 2b4>, + b24>2 , 

<il, = 4>, + b4>2' 

<il2 = 4>2' 

(1.10) 

(1.11) 

(1.12) 

For the moment, we shall confine the discussion 
to the transformation (c). From Eqs. (1.9), it can 
be shown that by an appropriate choice of b, l" can 
be made to point in any null direction except that 
of n~. If we wish to choose an l" such that <ilo = 0, 
it is easily seen from Eqs. (1.12) that the appropriate 
b must be a root of the equation 

o = 4>0 + 2b4>, + b2 4>2. 

In the case where the two roots are distinct (non-
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null fields) there are two possible 1" which are singled 
out. These two vectors (called the principal null 
vectors of the Maxwell tensor) are the real null eigen­
vectors of F ".. If 1" is chosen as one of them and 
if," as the other [using transformation (a) now] the 
iP's become iPo = iP2 = 0 and iP l r!: O. Note that now 
when 1" and ii" are chosen as the principal null vectors 
and the only freedom we have is the transformation 
(b), iP l is invariantly defined. Actually it can be 
simply expressed as a function of E2 - B2 and 
E·B, the only invariants of the Maxwell field. 

In the case of the two equal roots (called the 
null case) there is only one principal null vector. 
It is easily seen from (1.12) that <I>o = 0 implies 
that <I>l = 0, so that <I>2 is the only nonvanishing 
component. 

Though these results are not news and are well 
known, their presentation in this form is of use in 
that it shows the analogy with similar results in 
gravitational theory (Sec. IIB). 

C. Null-Surface Data and Solutions of 
Maxwell's Equations 

As mentioned previously, before we can solve the 
Maxwell equations (1.2)-(1.5), we must make a 
choice of coordinate and tetrad system. The simplest 
choice (for specialized problems other choices may 
be more useful) consists of adopting null polar 
coordinates and an associated tetrad. Starting with 
polar coordinates in the Minkowski line element, 
di = dt2 - dr2 - r2(dfl + sin2 8d4>2), the coordinate 
transformation, u = t - r (r, 8, and cp remaining 
the same), yields the null-coordinate line element 

di = du2 + 2dudr - r2(d82 + sin2 8dcp2). 

The surfaces u = constant are just the light cones 
emanating from the origin r = O. 

At any point in space the tetrad can be chosen 
in the following manner: l" is the outward null vector 
tangent to the cone, n" is the inward null vector 
pointing toward the origin, and m" and m" are 
vectors tangent to the two-dimensional sphere de­
fined by constant rand u. These vectors in the 
null coordinate system (XO = U, Xl = r, x2 = 8, 
x3 = cp) have the form 

" 1 1 (." + i.,,) m = \7:2;:- U2 sin 8 U3 , 
(l.13) 

m" = ~ ~ (fJ; - si~ 0 fJ;). 
8 J. L. Synge, Relativity, The General Theory (North­

Holland Publishing Company, Amsterdam, 1960). 

By direct calculation from their definitions, Eqs. 
(1.6b), the spin coefficients are found to be 

7r = K = E = A = 'Y = " = T = (j = 0, 

1 
p = -­

r ' 
a= 

1 
-2v2 r cot 0, 

1 
(3 = 2v2 r cot 8, 

The Maxwell equations now become 

a 2 1-
ar <I>l +;:- <I>I = v2r (~+ cot O)<I>o, 

all -
ar <I>2 + ;:- <I>2 = v2 r m<I>l, 

a<I>o _ .! a<I>o _ <I>o __ 1_ ~<I> 
au 2ar 2r-v2r I, 

a~ la~ ~ 1 - - - - - - = - (~ + cot 8)<I> au 2 ar r v2 r 2, 

(1.14) 

(I.15a) 

(I.I5b) 

(1.I5c) 

(1. 15d) 

where m == a/ao + (i/sin 8) a/a¢ and ~ is its 
complex conjugate. 

If <I>o is given on one null surface u = Uo as an 
arbitrary function of r, 8, and cp, the first two equa­
tions can be integrated immediately, with r as the 
independent variable (8 and cp are to be considered 
as parameters), yielding 

<I>o = <I>o(r, 8,cp), 

<I>~(8, cp) 1 f r (-
<I>l = r2 + ~ v2 m + cot 0) <I>o dr, (1.16) 

<I> = <I>~(O, ¢) + .! f ii<I>1 d 
2 r r v2 r, 

where <I>~ and <I>~ are "constants" of integration. 
[Assuming9 that <I>o = O(I/r3

), and ~<I>o, ~2<I>o = 
O(I/r3

), it is easily seen that <I>l = O(I/r2) and 
<I>2 = O(I/r). This result is a statement of the well 
known "peeling off" theorem in electromagnetic 
theory; namely, in the radiation zone where the 
fields go as l/r, i.e., where we neglect O(I/r2), the 
field is null and l" coincides with the degenerate 
or double principal null vector; in the intermediate 
zone where we neglect O(l/r3

), l" is one of the two 
principal null vectors, and finally where we keep 
O(I/r3

), l" coincides with neither of the principal 
null vectors.] 

If the expressions in Eqs. (1.16) are placed into 
the two remaining Maxwell equations, the u de­
pendence of <I>o and <I>~ is determined. There is no 
equation which governs the u dependence of <I>~ and 

9 These assumptions hold true in the case of retarded 
solutions or incoming fields of finite time duration. 
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hence it can be given as an arbitrary function of u 
as well as of 0 and cp. 

To summarize, an arbitrary but unique (up to 
the choice of the original Lorentz frame) solution 
of Maxwell's equations is obtained by giving 
<l>o(r, 0, cp), <I>~(u, 0, cp), and <I>~(O, cp) as arbitrary 
functions of their stated arguments. <I>~(u, 0, cp) will 
be called the news function in that its u dependence 
governs the u dependence of <1>0 and <I>~. Physically 
it is the information sent by a "broadcasting" 
station. <I>~, for reasons given later, will be called 
the charge aspect. 

At this point we make a special choice of <1>0, 
namely 

n;::: 1, (1.17) 

which corresponds to retarded multipole solutions. to 
In addition, solely for reasons of simplicity, we will 
assume axial symmetry; i.e., all functions will be 
independent of the angular coordinate cp. The op­
erator ~ becomes a/ao. (If this assumption is 
dropped, results similar to the ones presented in 
the remainder of this section and the next can be 
obtained. However, the added complexity just ob­
scures these results.) 

From (1.17) and (1.16) we obtain 

<1>0 1 (a ) <I> = ---1. - -- - + cot 0 
1 r2 v2 ao 

'" <I>~-I 
E r2+", , 
n~1 n 

1 0 (a ) '" <I>~-t 
+ 2 00 00 + cot 0 ~ n(n + l)r2+n

• 

(1.18) 

When the solutions, Eqs. (1.18), are substituted 
into the last two of the Maxwell equations (1.15c, d), 
the "time" dependence of <I>~ and <1>0 is obtained: 

(1.19a) 

(1.19b) 

(n + 1) <l>n-l _ -.l {a2<1>~-1 + t 0 o<l>~-I 
2 0 2n 002 co 00 

1 ;o.n-I} 
- --:-r-O "'-0 , sm 

(n ;::: 1) (1.19c) 

where the dot signifies the derivative with respect 
to u. It is easily seen that if <I>~, the "news," is 

10 The choice of functions other than a Taylor series in 
inverse powers of r corresponds to incoming radiation fields. 

given as an arbitrary function of u and 0, then 
<I>~, <l>g, and <I>~ are determined (up to their initial 
value, which is specified freely) and hence the entire 
solution is known. 

If we integrate Eq. (1.19a) over the surface of 
a sphere, i.e., multiply by 211" sin OdO and integrate, 
we obtain 

d~ {211" {' <I>~ sin 0 dO} 

= ~ r'" o(sin O<l>~) dO = 0 
v2 10 00 . 

(1.20) 

This is nothing but the law of conservation of charge 
with Q == 211" g <I>~ sin 0 dO being proportional to 
the charge. It is for this reason that <I>~ is called 
the charge aspect. (Bondi4 called the analogous 
quantity in the gravitational theory the mass 
aspect.) It should be noted that in the derivation 
of (1.20) it was implicitly assumed that <I>~ was not 
singular at 0 = 0 and 11". This assumption is now 
generalized to state that neither <1>0, <1>1, nor <1>2 shall 
have an angular singularity; i.e., there shall be no 
singular functions of o. Singular functions would 
correspond to sources which are not isolated but 
extend to spatial infinity. 

D. The Meaning of the Data 

It was shown in the previous section that if <I>~ 
and <I>~ are given at one value of u and <I>~ given 
for all values of u, then the complete u dependence 
of <I>~ and <I>~ is known. It is of interest to study 
the inverse problem; namely, if the u dependence 
of <I>~ and <I>~ is known, what "news," <I>~, gave rise 
to that u dependence. In particular, if all the <I>~, 
l > N, are zero, what "news" yielded that result? 
(These latter solutions will correspond to finite 
multipole expansions.) 

It is easily seen from Eq. (1.19c) that if all <I>~, 
l > N, are initially zero and 4:+1 = 0, then they 
remain zero. The latter condition then implies 

02<1>: 0<1>: 
002 + cot 0ai 

+ [(N + 1)(N + 2) - sin~ 8J<I>~ = o. (1.21) 

The solution is the associated Legendre function 

(1.22) 

where aN+1(u) is an arbitrary (complex) function 
of u. (The subscript N + 1 is used for notational 
reasons.) Knowing the angular dependence of <I>~, 
it is possible to determine, by Eq. (1.19c), <1>:-1. 
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The result, 

A = N/(N + 1), (1.23) 

excludes the solution of the homogeneous equation, 
which would have introduced a new arbitrary func­
tion of u, with angular dependence P~. This new 
"mode" of the field could be obtained by replacing 
N by N - 1 in the previous expressions and hence 
need not be considered separately. 

By repeated applications of (1.19c), one can obtain 
all the <I>~ down to <I>g, namely 

<I>~-m = Am(dm/dum)a,v+1P1+1(COS 6), 

and in particular 

<I>g = A,v(d,v aN+l/duN)P1+1( cos 6), 

(1.24) 

(1.25) 

Am being a number depending on Nand m. Sub­
stituting (1.25) into Eq. (1.19b), we obtain 

(1.26) 

Using <I>~ in (1.19a), we finally obtain the "news," 

0.27) 

where BN is also a numeric. Due to the linearity 
of the theory, it is possible to use for the "news" 
linear combinations of terms of the type (1.27), i.e., 

(1.28) 

One case which remains to be analyzed is that 
in which the entire <I>o is initially zero and remains 
so. From (1.19a, b) it is easily seen that as a con­
sequence, we must have 

<I>~ = ao(u) , 
(1.29) 

<I>~ = - v2 cot 6do(u). 

Because of the cot 6 and the previous assumption 
of no angular singularities in the solution, we must 
have do = 0, which is another statement of the 
law of conservation of charge. ll This is also a state­
ment of the fact that there exists no monopole 
radiation; i.e., that there can be no monopole "news." 

Let us now return to the examination of the solu­
tion generated by the news, <I>~, from Eq. (1.27). 
If we compare this solution with that obtained from 
an arbitrary (axially symmetric) outgoing multipole 
solution of the Maxwell equations, we find that the 
two are identical if a multiple of the aN(u) is identi­
fied with the multipole moment. A real aN cor-

11 An imaginary ao corresponds to a magnetic charge or 
monopole. Though there is nothing in the analysis presented 
here to exclude this possibility, it is excluded by the require­
ment that div B vanish everywhere. See also Sec. lID. 

responds to an electric-type pole and an imaginary 
one to a magnetic-type pole. ao is proportional to the 
monopole moment (charge), al to the dipole moment, 
etc. 

In analogy with the definition of <I>~ as charge 
aspect, it is reasonable to refer to <I>g as the dipole 
aspect, <I>~ as the quadrupole aspect, etc. 

To conclude this section we express three different 
solutions in terms of the <I>'s: 
(a) Monopole or Coulomb 

<I>o = 0, 

(b) Dipole 

<I>o = a1 (u) sin 6/r3
, 

(c) Quadrupole 

<I> _ d2 sin 6 cos 6 + a2 (u) sin 6 cos 6 
o - 2r3 r4 

<I>1 
(M3 cos2 6 - 1) 

6\1'2 r2 

(&~ sin 6 cos 6 

6r 

3d2 sin 6 cos 6 
4r3 

d2 (3 cos2 6 - 1) 
2\1'2 r3 

a2 (3 cos2 6 - 1) 
2\1'2 r4 

ti2 sin 6 cos 6 
2r2 

a2 sin 6 cos 6 
2r 

(1.30) 

(1.32) 

The ao, at) and a2 are proportional respectively to 
the charge, dipole moment (electric and magnetic), 
and quadrupole moment (electric and magnetic). 

II. GENERAL RELATMTY 

A. Field Equations 

In this section we give a brief summary of the 
spin-coefficient formalism for general relativity [see 
(NP) and (NU) for details]. We begin by introducing 
four linearly independent null vectors, l", n~, m~, 
and iFi/, in the same way as was done for Maxwell 
theory in Sec. IA; now, however, space-time is not 
necessarily fiat. The ten independent components 
of the Weyl tensor are then described by five complex 
tetrad components as follows: 
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'lro = -C~.p~lPmvl"m~, 

'lrl -C~vp~l~nvl"m~, 

'lr2 - C p.p~fii/nvl"m~, (2.1) 

'Ira - C p.p~m~nvlPn~, 

'Ir. -Cpvp~m~nvmPn~. 

Before writing down the field equations, we shall 
introduce some restrictions on the choice of coor­
dinates and tetrad vectors, analogous to the choices 
made for the Maxwell case in Sec. IC. We first 
choose a family of null hypersurfaces, designated 
by a parameter u = const. The first tetrad vector 
is taken to be l~ = u.~. If we then take u to be the 
coordinate xo, l~ takes the simple form l~ = 8~. 
The r are tangent to a family of null geodesics lying 
within the hypersurfaces, and we choose an affine 
parameter r along these geodesics to be the coor­
dinate Xl. The remaining two coordinates, x2 and 
xa, will be angular coordinates, whose choice singles 
out a particular one of the null geodesics on each 
of the hypersurfaces u = const. It should be pointed 
out that this choice of coordinates is well defined 
only in some finite coordinate patch; for example, 
if the coordinate system in an asymptotically fiat 
space is chosen asymptotically (i.e., for large r) to 
approach the fiat-space coordinate system described 
in Sec. IC, then as the null hypersurfaces are followed 
inward toward smaller values of r, caustics develop 
(i.e., the null surfaces cross) and the coordinate 
values are no longer uniquely defined. Thus the 
formalism that embodies such a coordinate system 
can only be used outside a world tube that contains 
all the caustics. 

The second tetrad vector, n~, is chosen to be null, 
and normalized according to the requirement lpnP = 1 ; 
it thus lies outside the hypersurface u = const. The 
vectors m P and m# will then be defined by the condi­
tions mpmP = rTi~m~ = m~l# = m~nP = m"m# + 1 = 0, 
as in Sec. IA. In terms of the coordinate system 
that has been chosen, the tetrad vectors may be 
written in terms of three arbitrary real functions, 
U and X\ and three arbitrary complex functions, 
W and ~\ where i = 2, 3, as follows: 

the null geodesics used in the definition of the coor­
dinate system). 

The content of the empty-space Einstein equa­
tions can now be expressed by a set of field equations 
written in terms of the notation of Eqs. (1.6). 
Although these equations are large in number, they 
are in many respects easier to work with than the 
original equations. We note first of all that our 
choice of coordinate system and tetrad makes the 
derivatives (1.6a) take the form 

D = alar, 8 = wajar + {a/ax i
, 

(2.3a) 
.1 = ua/ar + a/au + x'a/ax', 

and certain of the spin coefficients (1.6b) satisfy the 
relations [see (NP), Sec. IV] 

K = E = 11" = 0, p = ii, T = a + (3. (2.3b) 

The field equations may be divided into three groups. 
The first group consists of equations containing the 
radial derivative D: 

Dw = pw + UW - T, 

DXi = T~; + T{, 

DU = TW + TW - ("I + 1), 

Dp = / + uu, 

Du = 2pu + 'lro, 

Da = ap + {3u, 

D{3 = {3p + au + 'lrl' 

D"I = rex + T{3 + 'lr2' 

D'A = 'Ap + p.u, 

Dp. = p.p + 'Au + 'lr2' 

Dv = T'A + TP. + 'lia , 

D'li I - 5'1r ° = 4 p'lr I - 4a'lr ° , 
D'lr2 - 5'1r1 = 3p'lr2 - 2a'li1 - 'A'lio, 

D'lra - 5'1r2 = 2p'lia - 2'A'lr1 , 

D'Ir. - 5'lia = p'li. + 2a'lia - 3'A'li2. 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

(2.4e) 

(2.4f) 

(2.4g) 

(2.4h) 

(2.4i) 

(2.4j) 

(2.4k) 

(2.41) 

(2.4m) 

(2.4n) 

(2.40) 

(2.4p) 
r = 8~, 

n~ = 8~ + U8i + Xi8~, 
m" = w8i + ~i8~, 

The second group of field equations consists of those 
(2.2) equations that involve u-derivatives of the 'Ir's; that 

is, those equations that describe the propagation of 
the Weyl tensor from one null surface to another: 

and mP is the complex conjugate of m~. We make 
the further specification that n P and m~ are to be 
parallelly propagated in the direction of l~ (i.e., along 

.1'li ° - 8'Ir 1 

=(4"1 - p.)'lro - 2(2T + (3)'li1 + 3U'lr2' (2.5a) 
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d'l'l - 0'Jr2 

= v-q;o + 2(-y - f.l)-q;1 - 31'-q;2 + 2o-wa• 

Ai'2 - O'Jra 

= 2V-q;1 - 3f.l-q;2 - 2a-q;a + 0''1',10 

dWa - 0'Jr 4 

= 3vw2 - 2(-y + 2f.l)Ws - (1' - 4m-q;4' 

(2.5b) 

(2.5c) 

(2.M) 

The final group consists of field equations that in­
volve the derivatives A and 0, but no derivatives 
of the -q;'s: 

ox; - A~; = (J.I + 1 - 'YW + xt. 
O~i _ 8~i = (P _ a)~i + CO! - (1)~i, 

(2.6a) 

(2.6b) 

that under these transformations, the -q;'s transform 
in the following fashion: 

(a) -¥/l = -q;(), 

-¥l = -q;1 + a-q;o, 

-¥2 = -q;2 + 2a-q;1 + a~ol 
-¥a = -q;a + 3a'l'2 + 3a2-q;1 + a3wo, 

-¥4 = -q;" + 4a-q;3 + 6a2-q;2 + 4a3-q;1 + a4wo. 

(b) -¥o = A2e2
'1>'I'0, 

-¥l = Ae·1>-q;l) 

-¥2 = '1'2, 

-¥s = A -le-i~s, 

(2.7) 

(2.8) 

ow - &,;, = (P - a)", + (a - (3)w + J.I - iI, (2.6c) -¥4 = A-2e-2 '1>w4' 

oU - A", = (Il + ,y - '1')'" + Xw - v, (2.6d) () .'l'. ,T, + 4b,T. + 6bz,T. + 4b3,T. + b4,T. 
I C 'i." 0 = TOT 1 "" 2 "" 3 T ./ 

dA - 5v = 200' + (1 - 3'1' - f.l - p,)A - '1'4. 

op - 5u = rp + (P - 3a)O' - WI, 

oa - 8{3 = IlP - AU - 2a{3 + 00 + {3fj - '1'2. 

OA - 51l =- Til + (a - 3(1)A - '1'3. 

(2.6e) 

(2.6f) 

(2.6g) 

(2.6h) 

ov - dll = 'YJl. - 2v{3 + 11l + J.l2 + AX, (2.6i) 

0'1' - d{3 = 1'f.l - UP + (Jl. - 'I' + 1){3 + Xa, (2.6j) 

or - du = 2r{3 + (1 + Jl. - 3'Y)u + Xp, (2.6k) 

t::.p - 81' = (-y + 1 - p,)p - 2aT - AU - '1'2, (2.61) 

da - &y = pv - 1'A - A{3 + (1 - 'Y - p,)a - '1'3' 
(2.6m) 

B. Tetrad Rotation and the Algebra of the 'F's 

The tetrad transformations (1.7), (1.8), and (1.9) 
express the freedom allowed in the choice of a tetrad 
subject only to the "orthonormality" restrictions. 
We have imposed two additional restrictions on the 
tetrad described in Sec. HA, each of which reduces 
the group of allowed transformations. The first re­
striction is that the direction of I" has been geo­
metrically determined, which eliminates the trans­
formations (1.9). The other restriction is that n" 
and m" are to be parallelly propagated along r, 
which makes the parameter a of the transformations 
(1.7) independent of r. In this subsection, however, 
we wish to examine the general question of the 
algebra of thew's before the tetrad is tied down 
by such restrictions, and hence we shall again con­
sider the full transformations (1. 7), (1.8), and (1.9), 
which we shall again denote by (a), (b), and (c), 
respectively. A straightforward calculation shows 

-¥l = Wi + 3bw2 + 3b2Wa + b3-q;., 

-¥~ = '1'2 + 2bwa + b2w., (2.9) 

-¥1I = '1'3 + b'lt". 

-¥4 = '1'4' 

Suppose that we have chosen a tetrad such that 
neither 'I' G nor 'It 4 vanishes. Such a choice is always 
possible, since if either or both of '1'0 and 'lt4 did 
vanish, we could make them both nonzero by means 
of transformations (a) and (c). (Here and in the 
following discussion we assume that not all of the 
'It's vanish; i.e., the space-times being considered 
are not fiat.) If we now wish to make ~o = 0, 
we see that we must use transformation (c), which 
rotates ll' into 1". Each such null rotation is specified 
by a parameter b, which is a root of the quartic 
equation 

Wo + 4bw1 + 6b2
'1'2 + 4b3'1'a + b4w, = 0 (2.10) 

obtained from the first of Eqs. (2.9). Each 1" cor­
responding to a root of Eq. (2.10) is said to be a 
principal null vector of the Weyl tensor. Since 
'1'4 ;;e 0, there are in general four principal null 
vectors. If, however, any of the b's satisfying Eq. 
(2.10) is a multiple root of the equation, then there 
are fewer than four distinct principal null vectors, 
and the Weyl tensor is said to be algebraically 
special. The algebraically general Weyl tensor, cor­
responding to the case of four distinct roots, is 
said to be of Type I. If there are two single roots 
of Eq. (2.10) and one double root, the Weyl tensor 
is said to be of Type II. If b is chosen to be the 
double root of Eq. (2.10), then -¥l also vanishes. 
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This may be seen by noting from Eqs. (2.9) that 
~I is proportional to the derivative of ~o with 
respect to b. Thus if b is a double root of the equa­
tion ~ 0 = 0, then d~ 01 db also vanishes for the same 
value of b. Consequently, b is also a root of the 
equation WI = O. 

By a similar argument it may be seen that if b 
is a triply degenerate root the first three ~'s vanish, 
and if b is quadruply degenerate only ~4 is nonzero. 
In the latter two cases, the Weyl tensor is said to 
be of Types III and N, respectively. The remaining 
possibility is that Eq. (2.10) has two double roots, 
in which case the Weyl tensor is said to be of Type D. 

It follows from the definitions (2.1) of thew's 
that under the interchanges l~ +-+ n~ and m~ +-+ fit, 
thew's undergo the interchanges '1'0 +-+ '1'4 and 
WI +-+ '1'3, while '1'2 is unchanged. This interchange 
of tetrad vectors also interchanges the roles of trans­
formations (a) and (c). Consequently, if ii~ is made 
a principal null vector of the Weyl tensor by use 
of transformation (a), then ~4 will vanish, with 
analogous results for all of the various cases of 
algebraically special Weyl tensors. In particular, in 
the case of a Type-D Weyl tensor, let us choose ll< 
and iiI< to be the two distinct principal null vectors. 
Then ~2 is the only nonvanishing ~, and the only 
remaining tetrad freedom is transformation (b), 
which leaves -@-2 unchanged. It is thus possible to 
specify invariantly defined tetrad components of a 
Type-D Weyl tensor, in close analogy to the speci­
fication of invariantly defined tetrad components of 
a nonnull Maxwell tensor in Sec. lB. 

C. Null-8urface Data for the Einstein Equations 

A discussion of the initial-value problem for the 
gravitational field equations (2.4), (2.5), and (2.6), 
where an initial surface is one of the null surfaces 
u = const., has been given in (NU). That discussion 
is closely analogous to the one given for the Maxwell 
field in Sec. IC of the present paper. In this sub­
section, we shall briefly review the results of (NU); 
then in the following subsection, we shall discuss 
the meaning that we propose to give to the initial 
data in terms of the multipole structure of the 
sources. 

The assumption is made in (NU) that 'l' 0 is of the 
form 

(2.11) 

which seems to correspond to the exclusion of in­
coming radiation of infinite duration. In addition, 
the coordinate system is subject to certain restric­
tions beyond those mentioned in Sec. IIA, the details 

of which need not concern us here. It then follows 
that a unique solution to the field equations (2.4), 
(2.5), and (2.6) is determined by five pieces of 
initial data. The first of these is '1'0 specified on 
an initial null surface u = const. The second piece 
of data is specified on a timelike world-tube which 
may be thought of as being at spatial infinity; this 
piece of data is U

O == lim ..... '" r 2
u, where u is defined 

in (1.6b). Whereas these two pieces of data are 
functions of three variables, the remaining data are 
functions only of two variables, and may be thought 
of as being specified on the two-dimensional inter­
section of the null surface on which '1'0 is given and 
the world-tube on which Uo is given. Two of these 
pieces of data are w~ == lim ..... '" r4w I and w~ + q;~ == 
lim ..... '" r3 (w2 + q;2); the remaining piece of data 
is related to the metric of this two-dimensional sur­
face, and depends on the specific coordinate condi­
tions that have been imposed. It is only the first 
four pieces of data with which we shall be concerned, 
and to which we shall give a physical meaning. 
The quantity Uo is called the news function, as it 
is the u-dependent piece of initial data (Bondi4 has 
called the u-derivative of Uo the news function), 
and w~ + q;~ is related to Bondi's mass aspect.4 
The significance of the mass aspect and analogous 
quantities for multipole moments will be discussed 
in the following subsection. 

D. The Meaning of the Data 

We turn now to the linearized theory of gravita­
tion, in which it is possible to make an unambiguous 
interpretation of solutions in terms of properties of 
the sources. 12 In the appendix, we discuss the time­
independent, axially symmetric, linearized solutions 
corresponding to multipoles of arbitrary order. Here 
we shall be concerned with the question of how 
multipole structure is related to the initial data in 
the time-dependent case, though for the sake of 
simplicity we shall keep the restriction of axial sym­
metry. The general features of the results that we 
obtain in the linearized theory provide the basis 
for definitions of multipole moments in the full 
theory. 

Our treatment will be closely analogous to the 
treatment of Maxwell theory in Sec. 1. We begin by 
assuming '1'0 to be of the form 

(2.12) 

where W~-2 is a function of u and (J. The form (2.12) 

11 R. K. Sachs and P. G. Bergmann, Phys. Rev. 112, 
674 (1958). 
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is consistent with the assumption (2.11) as well as 
with the time-independent multipole expansion dis­
cussed in the appendix. We next assume that the 
sum in (2.12) stops at some finite n = N, and see 
what the initial data must be in order for that 
assumption to hold for all values of u. 

We thus assume that 'l'o is given by 

(2.13) 

and substitute this expression into Eq. (2.5a), which 
describes the propagation of 'l'o as a function of u. As 
an illustration of the procedure to be followed, we 
shall outline the treatment of Eq. (2.5a) in somewhat 
more detail than we shall give for the succeeding 
equations. We note first of all that'l'l enters Eq. 
(2.5a) ('l'2 drops out as a result of the linearization). 
The r-dependence of 'l'1 may be obtained by integra­
ting Eq. (2.4m), where we can use the Hat-space 
values of p, a, w, and ~i since all of the equations 
are to be linearized. This integration yields a 'l'1 
of the form 

'l', = ;.~ + 7 J r:l(~ a:o" + V2 'l'o cot 0) dr, (2.14) 

where 'l'~ is a "constant" of integration (i.e., taking 
account of axial symmetry, 'l'~ is a function of u 
and 0 only). If we use (2.13) for 'l'o, we find that 
'l', is given by 

N 1 
~ v2 (n - 1)rn

+
3 

X (~~-2 + 2'l'~-2 cot 0). (2.15) 

If we now substitute (2.13) and (2.15) into Eq. (2.5a), 
again using the Hat-space values of the new spin 

The only nonsingular solution of this equation is 

'l'~-2 = a.vP~( cos 0), (2.18) 

where P ir is the Nth second associated Legendre 
function, and aN is an arbitrary function of u. Thus, 
by comparison with the first of Eqs. (A4) of the 
appendix, this term has the form of a 2N-pole with 
a time-dependent moment. We shall say that by 
definition this term represents a 2N-pole whose moment 
is proportional to aN; a real aN corresponding to an 
"electric" -type pole, an imaginary aN to a "mag­
netic"-type pole (see appendix). From the coeffi­
cients of r-(n+4) for 2 ~ n ~ N - 1, we obtain 
the set of equations 

a2'l',,-2 a'l',,-2 at- + -to cot 0 + n(n + 1)'l'~-2 

- 4'l'~-2 csc2 0 = - 2(n - l),jF~-', 

2~n~N-1. (2.19) 

Having the solution (2.18) to Eq. (2.17), we can 
integrate Eq. (2.19) for n = N - 1; then having 
the solution to that equation, we can integrate Eq. 
(2.19) for n = N - 2; and so on through the whole 
set. At each step we obtain a new "constant" of 
integration a,,(u), corresponding to a solution of the 
homogeneous equation, and thus to a 2"-pole, just 
as with Eq. (2.17); the solution to the inhomogeneous 
equation corresponds to terms that are induced by 
the time dependence of the higher-order poles. We 
may write the general (nonsingular) solution to the 
combined set of equations (2.17) and (2.19) as 

2 ~ n ~ N, (2.20a) 

coefficients that are introduced, we obtain where 

+ n(n + 1)'l'~-2 - 4'l'~-2 csc2 0] ' (2.16) 

where the dot signifies the derivative with respect 
to u. Coefficients of like powers of r on the two 
sides of Eq. (2.16) must be equal. From the co­
efficients of r-(N+4>, we obtain the equation 

(2.17) 

"mrr-, 2(l - 1) 
am = l~n m(m + 1) - l(l + 1) , 

m > n; (2.20b) 

Finally, from the coefficients of r- 5 in Eq. (2.16), 
we obtain 

a'l'Uao - 'l'~ cot 0 = V2 ,jFg. (2.21) 

Using the solution (2.20) for 'l'g, we may integrate 
Eq. (2.21) to obtain (again discarding singular 
solutions) 

ai = -1/V2, (2.22) 
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where the P ~ are first associated Legendre functions. 
The new "constant" of integration aI, which comes 
from the solution of the homogeneous equation, cor­
responds to a dipole; the other terms are again 
induced by the time dependence of the higher-order 
poles. 

We now proceed to go through the analogous 
steps with the remaining u-propagation equations 
(2.5). The linearized version of Eq. (2.5b) does not 
involve 'lIa, and '112 is obtained by integrating Eq. 
(2.4n). We find that '112 is of the form 

'112 = ~~ + ~ r" J r2(70' + '11, cot 0) dr, (2.23) 

where 'lI~ is a function of u and o. Eq. (2.5b) then 
yields the following differential equation for 'lI~ 
(where we have used the previous results for '111 
and '110): 

(2.24) 

The solution to Eq. (2.24) may be written in terms 
of Legendre polynomials as 

2 1 
ao = "2' (2.25) 

The new "constant" of integration ao corresponds 
to a monopole, and the remaining terms are induced 
by the time dependence of the higher-order poles. 
Since only the real part of 'lI~ is part of the initial 
data, the imaginary part of 'lI~ must be expressible 
in terms of initial data. Using the results of (NU), 
we may write 

'110 _ \flo _ ! ii(uO - UO) + ~ a(uO - UO) t 0 
2 2 - 2 aif 2 ao co 

(2.26) 

. By combining Eqs. (2.25) and (2.26), we obtain 

a2( ° _0) !l( ° -0) u - u + 3 u u - u t 0 _ 2( ° _ _0) aif ao co u u 

N 2 dm(a", - am) 
= 4 Lam d .. P m(COS 0). (2.27) 

11£-0 u 

Before dealing with Eq. (2.27), we shall go on to the 
further treatment of Eqs. (2.5). 

The linearization of Eq. (2.5c) eliminates '114 , and 
'113 is obtained by integrating Eq. (2.40). We find 
that '113 is of the form 

'lI~ 1 J iJ'l12 
'lIa = 7 + v2 r2 r ao dr, (2.28) 

where 'lI~ is a function of u and O. Equation (2.5c) 

then yields the following differential equation for 'lI~: 

iJ'l1~ ° iii + \{fa cot 0 

(2.29) 

We find that this equation has no nonsingular solu­
tion in the presence of a time-dependent monopole 
moment. We thus take 

do = o. (2.30) 

[The real part of this condition corresponds to the 
conservation of mass in analogy to the way in which 
conservation of charge was obtained for the Maxwell 
field; we shall see later that the imaginary part 
of (2.30) is empty.] We also find that no new "con­
stant" of integration enters into the nonsingular part 
of the solution, which is 

N 2 dm+I 
'lI~ = 2v2 L (Q+ 1) d m~t'" P~(cos 0). 

m-I m m u 
(2.31) 

We may use the results of (NU) to express 'lI~ in 
terms of initial data as 

-0 1 aiTo .m.O 
'lIa = - v2 ae - v2 u cot o. (2.32) 

(For notational convenience, we have written this 
equation in terms of ~~ rather than 'lI~.) Combining 
Eqs. (2.31) and (2.32), we obtain the following condi­
tion on uo: 

(2.33) 

We find that Eq. (2.33) has no nonsingular solution 
for iTo unless we take 

al = 0, (2.34) 

(which corresponds to the absence of gravitational 
dipole radiation) and again set the new "constant" 
of integration equal to zero. The solution for iTo is 
then 

N 2 
·0 u = 4 L Q

m 

- m-2 (m - l)m(m + l)(m + 2) 

d"'+1-
X du"~lm P~(cos 0). (2.35) 

For the last of Eqs. (2.5), we obtain \{f4 by integrat­
ing Eq. (2.4p), with the result 

(2.36) 
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Equation (2.5d) then leads to the differential 
equation 

iN!~/ a 8 + 2'lr~ cot 8 
N 2 d:'+2a 

= 4:E (a+ 1) d m+2
m p m(COS 8), m-2 m m u 

(2.37) 

where we have made use of the condition (2.34). 
The nonsingular solution of Eq. (2.37) is 

N 2 

-q;0 _ 4 :E am 
4 - m-2 (m - 1)m(m + 1)(m + 2) 

(2.38) 

From the results of NU, we may write -q;~ in terms 
of initial data as 

(2.39) 

If we substitute Eq. (2.38) for -q;~ into Eq. (2.39), 
we get an expression for a2(//au2 that is just the 
derivative of Eq. (2.35). Thus no new conditions 
on (]'o are obtained. 

Equation (2.35) is trivially integrated to give 

° (]' = 
N 2 

4 :E am 
- m-2 (m - 1)m(m + 1)(m + 2) 

X ~:~m P~(cos 8) + 1, (2.40) 

where 1 is a function of 8 alone. If we substitute 
the solution (2.40) into the condition (2.27), we 
obtain the following differential equation for the 
imaginary part of 1, where the prime denotes the 
derivative with respect to 8: 

(f" - J") + 3(f' - ]') cot 8 - 2(1 - J) 
= -2(ao -0,0) + 2\12 [deal - o,l)/du] cos 8. 

The nonsingular solution of Eq. (2.41) is 

1 j- - ( -) - \12 deal - 0,1) 8 - - ao - ao 3 du cos. 

(2.41) 

(2.42) 

It will be noted that the right-hand side of Eq. (2.42) 
is, in accord with Eq. (2.40), not a function of u, 
due to the previously obtained conditions (2.30) 
and (2.34). 

In order to understand the significance of the 
right-hand side of Eq. (2.42), let us recall that the 
monopole moment is proportional to ao and the 
dipole moment to al' The real part of ao corresponds 
to an "electric" -type monopole, which is just an 
ordinary mass monopole, and its constancy (see 
Eq. [2.30]) is just the mass conservation law. The 
term ao - 0,0 in (2.42) corresponds to a "magnetic"-

type monopole, which is known not to exist within 
the framework of linearized gravitational theory.12 
Before pursuing this point, let us first turn to the 
case of the dipole. The real part of al corresponds 
to an ordinary ("electric" -type) mass dipole moment, 
and the vanishing of ii l (see Eq. [2.34]) implies the 
conservation of linear momentum. The imaginary 
part of al is a "magnetic"-type dipole moment, 
which is proportional to the angular momentum. 
Thus the term deal - {il)/du in (2.42) corresponds 
to a changing angular momentum, so that conserva­
tion considerations lead us to expect that this term 
should also not exist. If we now calculate the metric 
tensor (in a "Cartesian" coordinate system) asso­
ciated with either an imaginary ao or 0,1, we find 
that it contains line singularities extending to 
spatial infinity, corresponding to a space that is not 
simply connected. (The same type of singularity 
occurs in the vector potential for a magnetic mono­
pole in the Maxwell field.) Weare thus led to con­
clude that both ao and 0,1 are real, and consequently 
the function 1 in Eq. (2.40) is real. Since the real 
1 is unrestricted by our considerations on the nature 
of the sources, it might be expected that 1 could 
be made zero by using the remaining freedom4

•
7 in 

the choice of coordinates and tetrad vectors. This 
expectation is, in fact, found to be true. 13 Weare 
thus led to a news function given by 

° (]' = 
N 2 

4 " am 
- ~ (m - 1)m(m + 1)(m + 2) 

d:'o,m p2 ( ) X dum m cos 8. (2.43) 

Let us now summarize the physical interpretation 
of the initial data. -q;~ + ~~ is what Bondi4 has called 
the mass aspect. It is clear from the form (2.25) 
for -q;~ and the orthogonality properties of the 
Legendre polynomials that the mass is proportional 
to g (-q;~ + ~~)Po(cos 8) sin 8 d8 = g (-q;~ + ~~) 
sin8 d8. Similarly, -q;~ is the dipole aspect, with the 
dipole moment proportional to g -q;~p~ (cos 8) sin 8 d8; 
-q;g is the quadrupole aspect, with the quadrupole 
moment proportional to g -q;gP~(cos 8) sin 8 d8; and 
-q;~-2 is the 2ft-pole aspect, with the 2ft-pole moment 
proportional to g -q;~-2P!(COS 8) sin 8 d8. The form 
of the news function, (]'o, whose time dependence is 
part of the initial data, guarantees that the angular 
dependence of the rest of the initial data will be 
independent of which null hypersurface is picked 
as the initial surface. 

We propose the following definition of multipole 

13 T. Unti (private communication). 
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structure in the full (axially symmetric) Einstein 
theory of gravitation: When the initial data shows 
the angular dependence that we have foup.d for a 
2n-pole in the linearized theory, we will say that 
by definition the source of the field has the structure 
of a 2 n -pole, with the 2n-pole moment proportional to 

Lr 

'IF~-2P!(COS (J) sin (J d(J 

for n > 2, the dipole moment proportional to 
g 'IF~P~(cos(J)sin(J d(J, and the monopole moment 
(i.e., mass) proportional to g ('IF~ + :;r;~)sin(J d9. 
An examination of the suitability of these definitions 
in the full theory is being actively pursued. 

We conclude this section by exhibiting the Weyl 
tensor and news function for four specific examples 
of linearized multipoles, as well as one example 
(given without derivation) of a nonaxially symmetric 
news function: 

(a) Monopole 

'lFo = 0, 

'lFl = 0, 

'lF2 = ao/r3, 

'lFa = 0, 

'IF, = 0, 

(,0 = 0, 

where ao is real and constant. 

(b) Dipole 

W"o = 0, 

'lFl = al(u) sin (J/r\ 

W"2 = -v2 (it cos (J/r3 
- v2 al cos (J/r\ 

'lFa = -al sin (J/rS 
- al sin (J/2r', 

'IF, = 0, 

U
O = 0, 

where al is real and constant. 

(c) Quadrupole 

'110 = 3~ sin2 (J/rs
, 

'111 = 
3v2 a2 sin (J cos (J 

(2.44) 

(2.45) 

(2.46) 

ijO = -ia2 sin2 (J. 

(d) Octupole 

'IF _ 5da sin2 (J cos (J + 15aa sin2 (J cos (J 
0- ~ ~, 

as sin (J(5 cos2 (J - 1) 
v2 r 4 

5da sin (J(5 cos2 (J - 1) 
v2 rO 

15a3 sin (J(5 cos2 (J - 1) 
2v2 r6 

<&~ cos 9(5 cos2 (J - 3) + 2aa cos (J(5 cos2 (J - 3) 
3ra r 4 

+ 5da cos (J(5 cos2 (J - 3) 
r 5 

+ 5aa cos (J(5 cos2 (J - 3) 
r6 , (2.47) 

'IF _ ca! sin (J(5 cos2 (J - 1) + <&~ sin (J(5 cos2 (J - 1) 
3 - 6v2 r2 v2 r3 

+ 3a3 sin (J(5 cos2 (J - 1) 
v2r4 

+ 5aa sin (J(5 cos2 (J - 1) 
v2ro 

+ 15aa sin (J(5 cos2 (J - 1) 
4\1'2 r6 , 

'IF = <J~ sin2 
(J cos (J + 5ca~ sin2 (J cos (J 

'6r 6r2 

+ 5<&~ sin2 
(J cos (J + saa sin2 (J cos (J 

2ra r4 

+ 25a3 sin2 (J cos (J + 15a3 sin2 (J cos (J 
4r5 4r6

, 

ijo = -l<&~ sin2 (J cos (J. 

(e) Arbitrary Quadrupole News Function 

U
O = g2(u)e2i

</>[ -sin2 (J + 2(1 + cos (J)] 

+ gl(u)ei
</> sin (J(1 + cos (J) 

+ go(u) sin2 (J + g_l(u)e- i
</> sin (J(1 - cos (J) 

+ g_2(u)e-2i
</>[ -sin2 (J + 2(1 - cos (J)], (2.48) 



                                                                                                                                    

914 A. 1. JANIS AND E. T. NEWMAN 

where the five g's are the components of an irre­
ducible quadrupole tensor. 
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APPENDIX 

Sachs and Bergmannl2 have given a complete 
classification of time-independent linearized solutions 
of the Einstein field equations in terms of multipole 
structure of the sources. These poles are of two 
types, which Sachs and Bergmann refer to as 
"electric" and "magnetic" types of poles. The 
"electric" poles are static in character, correspond­
ing to masses at rest, whereas the "magnetic" -type 
solutions are stationary, corresponding to time-in­
dependent mass "currents." In this appendix, we 
shall find the initial data (we shall, in fact, exhibit 
all of the v's )corresponding to these solutions, under 
the simplifying assumption of axial symmetry. (It 
will be noted in some of the following expressions 
referring to 2 "-poles that n occurs in the denominator 
which means that we are excluding monopoles. 
Although a solution corresponding to a "magnetic" 
monopole doesn't exist,12 the "electric" monopole 
solution is just the familiar Schwarzschild solution. 
By treating the latter case separately, we find that 
our final results are in fact valid for this case, even 
though the earlier equations in this appendix are not.) 

In De Donder coordinates, with Xl = X, x2 = y, 
x3 = Z, and X4 = t, the metric tensor for 2"-poles 
takes the form 

gil = g22 = g33 = -1 + anP,,(cos fJ)/2rn+l, 

g44 = 1 + a"P,,(cos fJ)/2rn+l, 

g14 = (3nP~\cos fJ) sin 4>/2nrn+l
, 

g24 = -(3"P!(cos fJ) cos 4>/2nr"+I, 

(AI) 

where a" and {3" are proportional to the "electric" 
and "magnetic" 2"-pole moments, respectively; P" 
and P! are the Legendre and first associated Legendre 
functions, respectively; and (r, fJ, 4» are related to 
(x, y, z) by the usual relations between spherical 
and Cartesian coordinates. 

We must now introduce a tetrad and coordinate 
system satisfying the conditions of Sec. IIA. An 
appropriate coordinate system is given by 

U == XO = t - l' - a"P,,(cos fJ)/2nr", 

1" == Xl = r, 

fJ' == x2 = fJ - a"P!(cos fJ)/2n(n + 1)r,,+I, 
(A2) 

4>' == x3 = 4> - (3nP!(COS fJ) csc fJ/2n(n + 1)r"+I. 

In this coordinate system (dropping the primes) and 
in the notation of Eq. (2.2), an appropriate tetrad 
is specified by 

u = -t - a"Pn(cos fJ)/4rn+\ 

X 2 = -anP~(COs fJ)/4(n + 1)r"+2, 

X 3 = -(3"P!(cos fJ) csc fJ/4(n + 1)r"+\ 

w = (n + 2)(an + i{3,,)P!(cos fJ)/4v2 n(n + l)rn+\ 

e = 1/v2 r + (an + i{3,,)P!(cos fJ)/4v2 n(n + 1)r,,+2, 

e - i csc fJ _ i(an + i{3n)P;(COs fJ) csc fJ (A3) 
- v2 r 4v2 n(n + 1)r,,+2 

where P! is the second associated Legendre function. 
The tetrad components of the Weyl tensor, using 

the tetrad (A3) and the coordinates (A2), are found 
to be 

v ° = (a" + i{3 .. )P!( cos fJ) /41'''+a, 

VI = -en + 2)(an + i{3,,)P!(cos fJ)j4v2 r,,+3, 

'lt2 = (n + l)(n + 2)(an + i{3,,)P,,( cos fJ)/S1'n+3
, (A4) 

Va = (n + 2)(a" + i{3n)P~(Cos fJ)/Sv2 1'''+3, 

'lit = (a" + if3n)P!(cOS fJ)/161',,+3. 

The news function, qO, may also be calculated, and 
is found to be zero. 
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Note on the Kerr Spinning-Particle Metric* 
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Physics Department, University of Pittsburgh, Pittsburgh, Pennsylvania 
(Received 19 June 1964) 

It is shown that by means of a complex coordinate transformation performed on the monopole or 
Schwarzschild metric one obtains a new metric (first discovered by Kerr). It has been suggested 
that this metric be interpreted as that arising from a spinning particle. We wish to suggest a more 
complicated interpretation, namely that the metric has certain characteristics that correspond to 
a ring of mass that is rotating about its axis of symmetry. The argument for this interpretation comes 
from three separate places: (1) the metric appears to have the appropriate multipole structure when 
analyzed in the manner discussed in the previous paper, (2) in a covariantly defined flat space as­
sociated with the metric, the Riemann tensor has a circular singularity, (3) there exists a closely 
analogous solution of Maxwell's equations that has characteristics of a field due to a rotating ring 
of charge. 

INTRODUCTION 

RECENTLY, R. Kerr l has derived a new solution 
of the empty-space Einstein field equations 

which in some sense represents a spinning object 
with mass; its linearized version is a mass monopole 
plus the Lens-Thirring spinning-particle metric. The 
present note has two purposes. In the first section 
we give a curious "derivation" of the Kerr metric 
by performing a complex coordinate transformation 
on the Schwarzschild metric. In the second section 
we attempt to argue that the Kerr metric has certain 
characteristics that suggest a metric arising from 
a ring of mass rotating about its axis of symmetry. 
There are three points to the argument: (a) In a 
covariantly defined flat space, the Riemann tensor 
considered as a field defined on the flat space is 
singular on a ring, (b) there is a very close analogy 
between the Kerr metric and a solution of Maxwell's 
equations having characteristics of a rotating ring 
of charge, and (c) using the definitions of the gravita­
tional multipoles given in the previous paper2 it is 
seen that the Kerr metric is compatible with the 
structure of a rotating ring of mass. 

"DERIVATION" OF KERR METRIC 

The Schwarzschild metric, written in standard 
coordinates, is 

It can be transformed by the coordinate trans­
formation 

* Supported in part by Aerospace Research Laboratories, 
Office of Aerospace Research, U. S. Air Force. 

1 R. P. Kerr, Phys. Rev. Letters 11, 237 (1963). 
2 A. I. Janis and E. T. Newman, J. Math. Phys. 6, 902 

(1965). 

u = t - r - ro In (r - ro), 

8' = 8, q,' = q" 

into the form (dropping the primes) 

ds2 = (1 - ro/r) du2 + 2 du dr 

r' = r, 

- r2(d82 + 8in2 8 dq,2). (2) 

(The surface u = constant is a spherically symmetric 
null surface.) 

The contravariant components of the metric [Eq. 
(2)], namely 

lO = 0, gll = -(1 - ro/r), gl2 = 1, 

l2 = -1/r2, g33 = -l/r2 sin2 8, 

can be written in the alternate form 

g#" = l"n" + l"n# - m#ffi' - m'ffi#, (3) 

where 

(4) 

_# 1 (~# i ~#) 
m = v'2 r U2 - sin 8 U3 • 

This complex null tetrad system forms the starting 
point of the "derivation" of the Kerr metric. "Der­
ivation" is put in quotation marks because there 
is no simple, clear reason for the series of operations 
performed on the tetrad to yield a new (different 
from Schwarzschild) solution of the Einstein equa­
tions, or even to yield a solution of the empty-space 
equations at all. Nevertheless, we do obtain a new 
solution. 

[Kerr has recently shown (in a private communica­
tion), from the Einstein field equations, that this 

915 
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type of operation works for the class of solutions, 
gpo = flp> + X2l"l •. This class contains the Schwarz­
schild metric as a special case.] 

The coordinate r is allowed to take complex values 
and the tetrad is rewritten in the form 

l" = ~i, n P = ~P - ! [1 - !:2 (! + !)J~p 
o 2 2 r l' 1, 

(5) 

_p 1 (~" i ~,,) 
m = v'2 r U2 - sin 0 U3 , 

l' being the complex conjugate of r. (Note that part 
of the algorithm is to keep l" and nP real and mP 

and m" the complex conjugates of each other.) We 
now formally perform the complex coordinate 
transformation 

r' = r + ia cosO, 

u' = u - ia cosO, 

0' =0, 

q/ = c{>, (6) 

on the vectors l", n", and m". (m'" is defined as the 
complex conjugate of m'''.) 

If one now allows r' and u' to be real, we obtain 
the following tetrad: 

- !{1 - ro[r'/(r,2 + a2 cos2 O)]} ~';, 

m'" = [v2 (r' + ia cos 0)r1 

X [ia sin O(~~ - ~';) + ~~ + (i/sin O)~~]. 

(7) 

The metric g'''' = l'''n'' + l"n'P - m'''m'' - m'>m'P 
can now be shown by a coordinate transformation 
to be equivalent to that of Kerr. 

INTERPRETATION 

The contravariant form of the Kerr metric can 
be written as (dropping the primes) 

the gO". being easily computed from Eq. (7). The 
form is dictated by requiring gO". to be independent 
of ro (or the mass m). By calculating the Riemann 
tensor it is seen that if ro goes to zero, then the 
space is fiat, which proves that gOP> can be looked 
on as a flat-space metric tensor which is covariantly 
defined by the Kerr metric. Another result from the 
study of the Riemann tensor is that the space is 
algebraically special, Petrov type ID, l" being one 

of the double principal null vectors. The vector l. 
is not, as it is in the Schwarzschild case, surface 
forming or hypersurface orthogonal, the constant a 
giving a measure of the curl of l". There are two 
real invariants (or one complex one) which can be 
computed from the Riemann tensor, namely 

'112 == Ra~'Y3lam~n 'Y m3 = -ro/2(r - ia cos 0)3. (9) 

It should be emphasized that one can not treat 
the coordinates r, 0, and c{> as usual polar coordinates, 
for even in the fiat-space limit (ro = 0), the metric 
gPO is not the polar coordinate version of flp>, the 
Minkowski metric. However the following coordinate 
transformation does lead to polar coordinates, T, 0, 
1/), and it == t - 1': 

1'2 = r2 + a2 sin2 0, tan,j) tan c{> - air 
= 1 + (a/r) tan c{> 

cos iJ = r cos 0/(r2 + a2 sin2 0)1, 

it = u - (r2 + a2 sin2 8)1 + r. 

(10) 

We have the situation that the Kerr metric has 
associated with it a fiat-space metric gOP> which 
allows us to define polar coordinates in the original 
nonfiat space. We can now ask where, as a function 
of the polar coordinates plotted in the associated 
fiat space, is the Riemann tensor, or its invariants, 
singular. Clearly '112 is singular at r = 0 and 0 = !1T, 
or in polar coordinates [from Eq. (10)] it is singular 
on the circle r = a, iJ = !1T. It is reasonable then 
to associate with the Kerr metric this ring singularity. 

The second point of our interpretation arises from 
noting the striking analogy between the Kerr metric 
and a solution of the Maxwell equations. First we 
will show the analogy between the Schwarz schild 
metric and the Coulomb field. The single invariant 
of the Schwarzschild Riemann tensor is '112 = 
-ro/2r3; the analogous invariane of the Coulomb 
field is 

;r.. - IF (l" '+ -p ') - /2 2 '*'1 = "2 ". n m m - -e r. 

If in these two invariants we substitute r = r' -
ia cosO [obtained from Eq. (6)], we get the invariant 
Eq. (9) for the Kerr metric and (dropping the prime 
again) for the Maxwell field we get the invariant 

<1>1 = -e/2(r - ia cos 0)2. 

It can be shown that this is a solution of Maxwell's 
equations expressed in terms of the original coor­
dinate system of the Kerr solution [Eq. (8) with 
ro = 0]; i.e., rand 0 are not polar coordinates. 

3 For a discussion of the invariants of the Riemann tensor 
and the Maxwell field tensor and the analogy between them 
see Ref. 2. 
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Using the coordinate transformation to polar coor­
dinates, Eq. (10), we can see that this solution is 
singular only on the circle r = a, and (j = !11'. The 
task of analyzing the multipole structure of this 
solution was rather laborious and only the first three 
terms were calculated with the following results: 
(a) the monopole moment is e; (b) there is no electric 
dipole and the magnetic dipole moment is propor­
tional to ea; (c) there is no magnetic quadrupole 
moment and the electric quadrupole moment is pro­
portional to ea2

; (d) there appears to be an alterna­
tion back and forth between the electric and mag­
netic type poles. 

This structure plus its singularity leads us to con­
clude that the field is due to a ring of charge rotating 
about its axis of symmetry with angular velocity 
proportional to a. 

The analogy between the Kerr solution and this 
solution of Maxwell's equations suggests that the 
Kerr metric represents a ring of mass rotating about 
its symmetry axis. This is substantiated by analyzing 
the multipole structure of the metric in terms of 
the definitions given in the previous paper. 2 The 

method consists of finding null surfaces in the Kerr 
space and introducing them as coordinate surfaces 
with an associated null tetrad system. A lengthy 
but not difficult calculation leads to results similar 
to that found in the Maxwell case; there exists (a) 
a monopole moment equal to m; (b) no mass dipole 
but a spin-pole proportional to ma; (c) no spin 
quadrupole but a mass quadrupole proportional 
to ma2

• 

From these three points we believe that our 
interpretation of the Kerr metric is reasonable.4 
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A new solution of the Einstein-Maxwell equations is presented. This solution has certain character­
istics that correspond to a rotating ring of mass and charge. 

THE purpose of the present note is to present 
a new solution of the Einstein-Maxwell equa­

tions which in some sense represents a rotating mass 
and charge. This solution bears the same relation 
to the charged Schwarzschild metric' (Reissner­
Nordstrom) as the Kerr spinning particle metric 
bears to the Schwarzschild. In fact one can "derive" 
it by means of a similar trick (complex coordinate 
transformation) as was used to "derive" the Kerr 
metric. 2 

The Reissner-Nordstrom metric in null coor­
dinates2 has the form 

ds2 
= (1 - 2m/r + e2/r2) du2 + 2 du dr 

- r2(d02 + sin2 0 dcfi2) , (1) 

where m and e are the mass and charge respectively 
and u labels the null surfaces. The contravariant 
form of the metric can be written 

g"' = l"n' + l'n" - m"m: - m'm:, (2) 

where 

l" = o~, m" = (1/v2 r)[o; + (i/sin O)oi) 
(3) 

" " (1 m + e") " n = 00 - 2 - -;: 2r2 0" 

and where m; is the complex conjugate of m". 
A new metric can now be obtained by the following 

formal process. The radial coordinate r is allowed 
to take complex values and the tetrad is rewritten 
in the form 

l" = o~, m" = (1/v2 1')[o~ + (i/sin O)O~) 

n" = o~ - ~ (1 - mU + ~ ] + ~) oi, 

(4) 

l' being the complex conjugate of r. [It should be 

* Supported in part by Aerospace Research Laboratories, 
Office of Aerospace Research, U. S. Air Force. 

1 R. C. Tolman, Relativity, Thermodynamics and Cosmology 
(Oxford University Press, London, 1934). 

2 E. T. Newman and A. 1. Janis, J. Math. Phys. 6, 915 
(1965). 

noted that if the term e2/2r2 in n" was replaced by 
le2(r- 2 + 1'-2) instead of e2/2r1', we would not obtain 
a solution of the Einstein-Maxwell equations.] If 
we now perform the same complex coordinate trans­
formation as was used in Ref. (2) (r' = r + ia cosO, 
u' = u - ia cos 0) we obtain the following tetrad, 

l" = oi, m" = [v2 (r' + ia cos O)f' 

X ria sin 8(0~ - o~) + o~ + (i/sin O)o~], 

n" = o~ - [t - (mr' - te2)(r,2 + a2 cos" OrJ)o~ (5) 

and associated metric tensor g'"' = l'"n" + l"n'" -
m'"iii" - 1n"iii'". 

If we take the following Maxwell field (stated 
in terms of the tetrad components3 of the field tensor 
F", rather than in terms of the tensor itself) 

cfio == F",l"m' = 0 

cfi, == tF",(l"n' + iii"m') = e/v2 (r - ia cos 0)2 (6) 

cfi2 == F",iii"n' = iea sin O/(r - ia cos 0)3, 

it can be shown by direct calculation that this field 
with the metric associated with Eq. (5) constitutes 
a solution of the Einstein-Maxwell equations. [We 
wish to point out that there was no simple algorithm 
which led to Eq. (6). It had to be obtained by 
integration.) 

By arguments similar to those used in (2) we 
conclude that this solution represents the gravita­
tional and electromagnetic fields of a ring of mass 
and charge rotating about its axis of symmetry.' 

The Weyl tensor of this space is type II degenerate, 
the double null vector being l". l" is also a principle 
null vector of the Maxwell tensor. I" is shear free 
but not hypersurface orthogonal, a measuring its 
curl. 

In conclusion, we give the contra- and covariant 

3 A. 1. Janis and E. T. Newman, J. Math. Phys. 6, 902 
(1965). 

• We wish to thank the referee and R. Kerr for pointing 
out a difficulty in this interpretation. The remarks in Footnote 
4, Ref. 2 apply here as well. 
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forms of the metric, where x == (r2 + a2 cos26)-\ 

xC _a2 sin2 6) xe + a2
) o 

o 
-xa 

x[2mr - Cr2 + a2
) - e2

] "V g 
xa 

and 

1 + x(e2 
- 2mr) 
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o 
o 
o 

-x -I 

-x 0 

x( -sin-2 6) 

x(a sin2 6)(2mr - e2
) 

-a sin2 6 
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In this paper the results from various areas of mathematical research which are necessary for a 
consistent unification of the Dirac and von Neumann formulations of quantum mechanics are col­
lected and presented as a single synthesis. For this purpose, direct integral decompositions of Hilbert 
space must be introduced into Dirac's formulation of spectral theory and representation theory; 
true unit vectors in the direct integral decomposition spaces replace unnormalizable vectors of in­
finite length. It then becomes clear that families of modified Dirac projection operators are simply 
related to the Radon-Nikodym derivative of von Neumann spectral measures. In terms of these 
mathematical preliminaries a second paper will present the more physical aspects of the resulting 
unified formulation of quantum mechanics. 

T HE definitive and beautiful formulation given 
to quantum mechanics by Dirac l has the single 

disadvantage of requiring the introduction of un­
normalizable vectors of infinite length into Hilbert 
space to represent eigenstates of observables having 
continuous spectra. This fact not only renders the 
theory mathematically nonrigorous, but even leads 
to practical difficulties in physical interpretation 
whenever powers and products of the functions rep­
resenting such unnormalizable vectors (o-functions) 
appear. The difficulties have been completely solved 
mathematically by the theories of von N eumann2 

.. Work supported by a National Science Foundation 
fellowship. 

1 P. A. M. Dirac, The Principles of Quantum Mechanics 
(Clarendon Press, Oxford, England, 1958), 4th ed. 

2 J. von Neumann, Mathematical Foundations of Quantum 
Mechanics (Princeton University Press, Princeton, New 
Jersey, 1955). 

and Schwartz,3 but the methods used differ sub­
stantially from Dirac's approach and have not so 
far proved practical for physicists. Our purpose here 
is to present a consistent formulation of quantum 
mechanics which, while preserving the basic phys­
ically useful approach of Dirac, will do away with 
the need for mathematically objectionable unnormal­
izable vectors and will allow us at will to pass easily 
and rigorously from a Dirac-type formulation to the 
von Neumann formulation. 

To do this we first need to present a spectral theory 
in terms of direct integral decompositions of Hilbert 
space and then, applying this theory, we can develop 
a rigorous but practical representation theory. This 
first paper, then, will be mainly a review and 

3 L. Schwartz, Theorie des Distributions (Hermann & Cie., 
Paris, 1950-1951). 
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and Schwartz,3 but the methods used differ sub­
stantially from Dirac's approach and have not so 
far proved practical for physicists. Our purpose here 
is to present a consistent formulation of quantum 
mechanics which, while preserving the basic phys­
ically useful approach of Dirac, will do away with 
the need for mathematically objectionable unnormal­
izable vectors and will allow us at will to pass easily 
and rigorously from a Dirac-type formulation to the 
von Neumann formulation. 

To do this we first need to present a spectral theory 
in terms of direct integral decompositions of Hilbert 
space and then, applying this theory, we can develop 
a rigorous but practical representation theory. This 
first paper, then, will be mainly a review and 

3 L. Schwartz, Theorie des Distributions (Hermann & Cie., 
Paris, 1950-1951). 
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synthesis of the mathematical results we need from 
various sources. Proofs for the assertions made will 
not be given here, but they can readily be found 
in our references. The only novel features not present 
(to the author's knowledge) in existing mathematical 
or mathematical-physical literature can be summar­
ized as (1) replacement of unnormalizable vectors 
in the Dirac representation theory of Hilbert space 
by families of true vectors in direct integral de­
composition spaces, and (2) explicitation of the 
connection between families of Dirac-type projection 
operators and the Radon-Nikodym derivatives of 
von Neumann spectral measures.4 In our paper II, 
we will go on to give a physical formulation of 
quantum mechanics in terms of these mathematical 
preliminaries in a way that unifies the work of Dirac 
and von Neumann. 

1. SPECTRAL THEORY IN HILBERT SPACE 

As the first step in our program we indicate how 
Hilbert spaces general enough to meet all the needs 
of quantum mechanics can be built up from simpler 
spaces. The topological and measure theoretical 
background needed for this can be found in Halmos.6 

Let X be any locally compact set, H a mapping 
defined over X such that H(x) is a Hilbert space 
for each x E X, and I, g, ... various mappings 
over X such that I(x), g(x) are vectors in H(x). 
Thus H is a family of Hilbert spaces and i, g, •.. 
are families of vectors over X. If now 2: is a suitable 
O"-ring of subsets of X with the property that 
U 2: = X, the pair (X, 2:) will form a locally 
compact measurable space. We will say that H is 
a measurable lamily of Hilbert spaces if there exists 
a set S of families of vectors over X such that: (1) for 
all f E S the function lilli, which maps each x X 
into the number 11/(x)1I [the norm in H(x) of the 
vector l(x)J, is a measurable function on (X, 2:); 
(2) if, for every I E S, whenever the function Cg, i) 
is measurable on (X, 2:) then g S, where {g, i) 
maps each x E X into the number (g(x), f(x» 

4 Since the completion of this paper we noticed in the 
stimulating and beautiful new book of R. F. Streater and 
A. S. Wightman, peT, Spin and Statistics, and All That 
(W. A. Benjamin, Inc., New York, 1964), the following 
statement (p. 92): "The method (Le., of Dirac) can be 
completely justified by using the theory of direct integrals, 
but we want to avoid that." The reference given there is to a 
mathematical development of direct integral theory (our 
reference 5). The present paper, then, Can be read as an 
explanatory footnote to the statement of Streater and 
Wightman. 

5 For a complete treatment of direct integrals of Hilbert 
spaces see: J. DIXmier, Les Algebres d'Operateurs dan81'Espace 
Hilbertien (Gauthier-Villars, Paris, 1957). 

6 P. R. Halmos, Measure Theory (D. Van Nostrand Inc., 
Princeton, New Jersey, 1950), particularly Chaps. V, VI, 
VII, and X. 

[the inner product in H(x) of the vectors g(x) and 
f(x)J; (3) there exists a countable set lI .. } of elements 
in S such that for each x E X the set lIn(x) I is 
dense in the space H(x). The families of vectors 
in S are then called measurable families of vectors. 
From (3), it is clear that to form a measurable 
family of spaces the individual spaces H(x) must 
be separable. 

Now let us assume that we have defined a measure 
p. on (X, 2:), so that we have a locally compact 
measure space (X, 2:, p.), and that H is a measurable 
family of Hilbert spaces on X. A family I of vectors 
in the spaces H (x) is called square integrable on 
(X, 2:, p.) if it is measurable and if 

(1) 

The set of square integrable families of vectors on 
(X, 2:, p.) can be shown to be a Hilbert space H IIi

, 

called the direct integral of the spaces H(x), and 
symbolized as 

Ell 

He = L H(x) dp.(x). (2) 

The construction of the space He is essentially 
unique in the sense that two measurable families 
H and H' yielding the same direct integral space 
can only differ on p.-null sets in X. & 

This process of synthesis can be reversed and 
general Hilbert spaces decomposed or analyzed as 
direct integrals of measurable families of spaces. 
The study of such decompositions largely constitutes 
the spectral theory of Hilbert space. We will need 
only the parts of this theory which deal with de­
compositions relative to commutative sets of normal 
operators (i.e., operators that commute with their 
adjoints); our treatment will be essentially that of 
Maurin.? 

Let H be a separable Hilbert space with vectors 
f, g, •.. and scalar product <I, g); let a = {ai} 
be a commutative set of normal operators on H, 
so that a,ai = a;a, and aia; = a;ai' for ai, aj E a 
and a; the adjoint of ai' Then there exists a direct 
integral of Hilbert spaces 

e 
I/!) = i fI(x) dp.(x) (3) 

over a compact measurable subset A of a locally 
compact measure space (X, 2:, p.), and a unitary 
mapping U from H onto fIe which simultaneously 

7 K. Maurin, "Spectraldarstel1ung der Kerne," Bull. Acad. 
Polonaise Sci. 8,461 (1959). 
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diagonalizes the system a; that is, there exists a 
mapping 

U:/~U(j) = lEfl~, lex) E fI(x) for x E A 
(4) 

such that 

(f, g) = L (j(x), O(x» dp.(x) = (j, 0) (5) 

and 

U(ad) = (ad) A = ad, a/ E a, (6) 

where the a; are measurable scalar functions 
a,: x ~ a, (x) E e for x EA. These functions are 
finite almost everywhere with respect to the measure 
p., which is positive over the set A. In case any 
particular a, E a is unitary (a! = a~l) we have 
a/(x) = 1 almost everywhere. If a. is self-adjoint, 
then a,eX) is real. 

In case the set a contains only finitely many 
normal operators, say aI, a2, ... , aN, we have avail­
able the so-called canonical diagonalization; that is, 
there exists a unitary mapping U : H ~ fI$ such 
that the space X is eN (the product of N complex 
planes), and 

(ad(z)f = zd(z), z. E ei , 

N 

Z = (ZI' '" ,Zi' '" ,ZN) E II e f = eN. (7) 
i-I 

If all the operators a. E a are self-adjoint then 
the set A will be a subset of N-dimensional Euclidean 
space, RN. If all the a. are unitary then A is the 
product of N unit circles in the complex plane, i.e., 
z, = e'z" 0 ~ x. < 211". Also, if (3 is an operator 
(bounded operator) on H that commutes with all 
the a, then (3 is decomposable in the following sense: 

((3f(x» A = S(x)l(x) , xE A, (8) 

where ~(x) is an operator (bounded operator) in the 
space hex). We should note that nothing has been 
stated concerning either the dimensions of the in­
dividual spaces hex) or the particular structure of 
the measure space (X, ~, p.). These depend on the 
particular set of normal operators relative to which 
the direct integral decomposition is made. 

Let us consider now the bilinear form (f, a,g), 
where f, g, are arbitrary vectors in a Hilbert space 
Hand ai is a normal operator on H. Using the 
canonical diagonalization of a, with respect to a set 
a of N normal operators such that a, E a we have 

(I, aig) = L Zi<f(Z), O(z» dp.(z), (9) 

where the measure p. is a product measure p. = 
IIf-1 P.f(Zf) over eN. The integral is taken over a 
measurable set A = IIf-1 Ai' where Ai C e can 
be any measurable set containing the spectrum of 
ai' Now from Fubini's theorem relating multiple 
and iterated integrals and the converse of the Radon­
Nikodym theorem for transformation of measures 
in integrals,8 we can rewrite this equation as 

(f, a;g) = f Z. d'Yi(j, g, z.), 
AI 

where the complex measure 

'Y,(j, g, B) = f f <fez), O(Z» dp.(z), 
B A' 

Bce, 

(10) 

(11) 

is determined by the vectors f, g E H and is called 
the canonical spectral measure of the operator a, 
with respect to the vectors f and g. We could, of 
course, choose any or all of the sets A. to be the 
whole complex plane e. Equation (10) gives the 
canonical spectral resolution of the bilinear form 
(f, aig), and is unitarily invariant, that is, the 
measure 'Y over the complex plane as well as a 
minimal set A. C e are uniquely defined for every 
normal operator a, independently of the particular 
unitary mapping U of H onto some direct integral 
h$, and so independently of the choice of a particular 
set of normal operators with respect to which H 
is decomposed. In particular, if we choose for the 
set {a,} a set consisting of a single normal operator 
a we get 

(f, ag) = Ie Z d'Y(f, g, z), z E e, (12) 

with 

'Y(f, g, B) = i (j(z), O(z» dp.(z) , BC e. (13) 

2. VON NEUMANN FORMULATION. 

This is the convenient point in our exposition 
of spectral theory to introduce the notions von 
Neumann used in formulating quantum mechanics2 

and to relate them to the formalism we have de­
veloped so far. A resolution of the identity, E, on 
a Hilbert space H is a one-parameter family of 
projection operators taking on values E

" 
where t 

ranges over a finite or infinite interval [a, b] C R, 
which satisfies the following conditions: (1) Ea = 0, 
Eb = I (identity operator); (2) E ,+o = E t (con-

8 Reference 6, pp. 143, ff., and 128, ff. 
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tinuity from the right); (3) ErE. = Em (m = 
min {r, 8 J). For our purposes we will consider only 
those resolutions of the identity defined over the 
whole real axis. We lose no generality by this 
apparent restriction since we can extend any E de­
fined initially only on an interval [a, b] to all of R 
by setting E, = 0 for t < a and E, = I for t > b. 
The first two theorems we will state show the im­
portance of such resolutions of the identity for 
spectral theory and give explicit prescriptions for 
constructing the canonical spectral measures of self­
adjoint and unitary operators. Proofs can be found 
in the standard references on linear operators in 
Hilbert space quoted with each result. 

Let a be the set of self-adjoint operators on a 
Hilbert space Hand 'U the set of unitary operators 
on H. Let a' be the set of resolutions of the identity 
on H defined over the whole real axis and 'U' the 
subset of a' such that E E 'U' if and only if E, = 0 
for t :::; 0 and E, = I for t ~ 211'. 

Theorem 1.9
•
10 There exists a one-to-one onto 

mapping (Le., a bijection) from a onto a' such that 
for 1, g E H and a E a the corresponding resolution 
of the identity E(a) E a' satisfies 

(1, ag) = £:00 t d(l, E,(a)g). (14) 

The domain of the operator a is the set of vectors 
(dense in H) for which the inequality 

£:00 t2 d(l, E,(a)g) < ro (15) 

is satisfied. 

Theorem 2.11 There exists a bijection from 'U onto 
'U' such that for 1, g E Hand (3 E 'U the correspond­
ing E({3) E 'U' satisfies 

(1, (3g) = £:00 ei
' d(l, E,({3)g). (16) 

N ow from Eq. (12) and Theorems 1 and 2 we 
see that for a E a, {:3 E 'U and 1, g E H we have 

and 

(18) 

9 F. Riesz and B. Sz.-Nagy, Functional Analysis (Fredrick 
Ungar Publishing Company, New York, 1955), p. 320. 

10 N. 1. Akhiezer and 1. M. Glazman, Theory of Linear 
Operators in Hilbert Space (Frederick Ungar Publishing 
Company, New York, 1963), Vol. II, p. 36. 

11 Reference 9, p. 281. 

where in each case')' is the canonical spectral meaure 
corresponding to the given operator and the vectors 
1 and g. Thus for an operator 0, which is either 
self-adjoint or unitary, we see that the function 
(1, E(o)g), which maps each t E R into the complex 
number (1, E,(o)g), acts as a complex distribution 
over the real axis and generates the complex Lebes­
gue-Stieltjes canonical spectral measure ')'(1, g, 0). 

Since 'U' is a subset of a', a resolution of the 
identity E({3) corresponding to a unitary operator (3 
also corresponds to a self-adjoint operator, which 
we will write as a({3), such that 

(I, a({3)g) = £:00 t d(l, E,({3)g). (19) 

Thus if a C a is the set of self-adjoint operators 
such that E(a) = 'U', it is clear that there is a 
bijective mapping of a onto 'U which we will write as 

(3(a) = eia
, 

From (16) we see that 

a E a. (20) 

(1, eiag) = £:00 ei
' d(l, E,(a)g). (21) 

Corresponding to Eqs. (14), (16), and (21) and under 
the same conditions, we will write the operator 
equations 

J
+OO 

a = -00 t dE,(a), (14') 

J
+OO 

(3 = -00 e
it 

dE,({3), (16') 

(21') 

It should be noted that these relationships can be 
shown to make sense purely as operator identities 
even without reference to (14), (16), and (21).12 

From the definition of a resolution of the identity 
and the fundamental properties of Lebsegue-Stieltjes 
integration we have the following important rela­
tionships: 

that is 

J
+OO 

_a> dE, = I for E E (1'. (23) 

It will also be useful here to recall the relationship 
between resolutions of the identity and the spectra 
of self-adjoint and unitary operators. Given an 

12 Reference 10, Vol. II, p. 21, ff. 
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E E a' we will say that the point a E R is a point 
of growth ofE if for all 0> OwehaveEa +8 - E a_& ~ O. 
Then the spectrum of a self-adjoint operator a can 
be specified as the set of points of growth of E(a) 
and the spectrum of a unitary operator (3 is the set 
of complex numbers {e i

'), where t ranges over the 
points of growth of E({3). 

Before closing this catalog of results from spectral 
theory, we give one further definition and two 
alternate versions of a theorem proven by M. H. 
Stone. A one-parameter group of unitary operators 
on a Hilbert space H will be defined as a family {3 
of unitary operators {3, (- <Xl < t < + <Xl) possessing 
the properties: {3o = I and {3r{3. = {3rH' We will 
say that such a family is continuous if the function 
(f, (3g), which takes each t E R into the number 
(f, (3,g), is a continuous function of t for every pair 
of vectors f, g E H. If e denotes the set of all 
continuous one-parameter groups of unitary oper­
ators on H we can state 

Theorem 3. (First version of Stone's theorem).13 
There exists a bijection from the set e onto the 
set a' such that for f, g E Hand (3 E e the cor­
responding E({3) E a' satisfies the equation 

(f, (3,g) = i:'" ei
" d(f, E.({3)g) (24) 

for all t E R. As before, we will write 

1
+'" 

(3, = _'" e"a dE.({3) (25) 

and 

(3() it" ,a = e , (26) 

where a is the unique self-adjoint operator such 
that E({3) = E(a). Clearly this specifies a bijective 
correspondence from a onto e. This bijection is 
further elaborated in 

Theorem 4. (Second version of Stone's theorem).14 
Every (3 E e is generated by a unique operator 
a E a and conversely, as given by the relationships 
(26) and 

a({3) = lim -hi (I - (3h)' 
h .... O 

3. REPRESENTATION THEORY IN 
HILBERT SPACE 

(27) 

For convenience in our latter application of the 
formalism to quantum mechanics we now introduce 
the Dirac notation for the vectors, scalar product 

13 Reference 9, p. 383; Ref. 10, Vol. II, p. 29. 
14 Reference 9, p. 385. 

and projection operators of a Hilbert space H; that is, 
for f E H we write If) E H and for a pair of vectors 
f, g E H we write (fig) = (f, g). This allows us 
to write the vectors f*, g*, ... , in the dual space H* 
(i.e., the bounded linear functionals on H) as (fl, 
(gl, •.. , and to use a symmetric notation for the 
bilinear functionals on H by defining (fl a Ig) = 

(f, ag) = (atf, g), where at is the adjoint of the 
operator a. For a unit vector lu) E H we will use 
the dyadic symbol lu)(ul to mean the projection 
operator that projects onto the one-dimensional sub­
space spanned by lu). Now let <BE be the class of 
all orthonormal basis sets for the space H, that is 
the class of all bases for H such that the vectors 
in each basis are unit vectors and are orthogonal 
to each other. Then, given a separable Hilbert space 
H and a set B = {Ii)} E <BH, where the vectors 
in B are labeled by the index i, we have the three 
identities 

E INil = I (completeness relation), (28) 
i 

If) = E li)(il If) = E (i I f) Ii) 
i i 

(Fourier expansion), (29) 

(f I g) = E (fl li)(jl Ig) 
i 

= E (f I J)(i I g) (Parseval's identity). (30) 
i 

Now each decomposition of a separable Hilbert 
space into a direct integral flff) produces a corre­
sponding family of separable Hilbert spaces flex), 
where x ranges over the elements of some locally 
compact space X and the spaces flex), while not 
subspaces of H, are related to it in the way that 
we specified earlier. Unless otherwise stated, we will 
limit ourselves to canonical decompositions of H 
with respect to a set of N self-adjoint commuting 
operators, a = {a,}. Thus X = RN. We adopt the 
Dirac convention regarding scalar variables cor­
responding to self-adjoint and unitary operators: 
if a represents a set of N self-adjoint operators, 
then the corresponding primed symbol a' represents 
the set of real variables (ar, a~, ... , a~) ERN. 
This notation will allow us to use such symbolism 
as flea') to mean a member of the family of spaces 
resulting from a direct integral decomposition of a 
space H with respect to the set a. If a is a single 
self-adjoint operator and {3 = e''', then of course 
(3' = e'''' E C, a' E R. We can also write E a , 

for the projection operator E,(a) in the family E(a) 
if we set t = a'. We will further agree to use the 
special rounded bracket symbols la', f), la', g), 
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~ithout caps, to represent the vectors J( a'), O( a'), .. " 
~n one of the spaces h(a') resulting from a direct 
Integral decomposition of a space H. Then the scalar 
produc~ in. H(a') will be written (f, a'la', g), and 
the prOjectIOn operator corresponding to a unit vector 
la', j) in a basis B E <BH(a') will be la', j)(j, a'i. 
It follows of course that the identity operators on 
the spaces H(a') will be given by 

d(a') 

lea') = L la', j)(j, a' I, (31) 
i-I 

where d(a') is the dimension number of H(a'). To 
s~plify writing, from now on we adopt the conven­
tIOn that the symbol Li la', j)(j, a'i will mean a 
summation over all d(a') projection operators cor­
responding to the vectors in a set {la', j)} E <Bn(a')' 

Let N be an integer-valued function defined over 
some measure space (X, ~ ,p.) (where, by convention, 
we are considering 1'\0, the cardinal number of the 
integers, to be an integer), and let CN be the set lIZEX CN(z). Consider now the set F~.N of all map­
pIngs f : X -7 CN such that f(x) E cN(z). If there 
exists a mapping r : H -7 F~.N' where H is some 
Hilbe:t space, such that for any If), Ig) E H the 
mappIngs f = r(lf» and g = r(lg» in F~.N have 
the property: 

f 
N(z) 

x t-t f~(X)gi(X) dp.(x) = (f I g), (32) 

[f~(x) is the complex conjugate of the jth component 
of f(x)], then clearly the set r(H) C F~.N has an 
induced Hilbert space structure with addition and 
multiplication by a scalar defined in the obvious 
way and the scalar product given by (32). In that 
case we call r(H) a generalized function space rep­
resentation of H. If the mapping r is one-to-one we 
will say that r(H) is a faithful representation of H. 
We symbolize the set of all function space representa­
tions of a given space H, for arbitrary mappings N 
and measure spaces (X, ~, p.), by fJH • 

In terms of these concepts we can now develop 
the principal results of our formulation of representa­
tion theory. Given a Hilbert space H and a set 
of N E!lself-adjoin~ ope~ators on H, say a = {ai}, 
let h a.~ be a dIrect Integral decomposition of H 
with respect to a, with U the unitary mapping of 
H onto H~.w Let If), Ig) E H~.~ be the families 
of vectors U(I1» and U(lg» respectively and write 
If)(a') = la', f) E H(a') and Ig)(a') = la',~) E H(a') 

, N ' 
a E R . Now we can choose a family B of ortho-
normal bases for the spaces H(a') so that for each 
a' E RN we have B a, = {la', j)} E <Bn(a')' 1 ~ 
j ~ d(a'), and use Eq. (31) to rewrite Eq. (5) as 

(f I g) = iN ~ (f, a' I a', g) dp.(a'), (33) 

where p. is a real Lebesgue-Stieltjes product measure 
over RN. To simplify writing even further we will 
omit one of the a' symbols in the scalar products 
Ct, a'la', g) and write simply (f I a', g). Clearly 
the mappings I : RN -7 Cd, where the functions 
fi : RN ~ C are given by Ii (a') = (f I a', j), specify 
a functIOn space representation of H which we will 
write as FH(a, p., B). Thus we see that each choice 
of a, p., and B satisfying the conditions we have 
laid down defines a unique representation in fJH • We 
will use the following consistent notation: F H C fJ H 

is the set of all function space representations gen­
erated via direct integral decompositions of a 
Hilbert space H with respect to sets of self-adjoint 
operators on H; F H(a) is the set of all function space 
representations in F H corresponding to the particular 
set of operators a; FHCa, p.) is the set of representa­
tions specified by the particular set a of N operators 
and the choice of a suitable measure p. over RN. 
From the fact that U : H -7H~.~ is an isomorphism 
it is clear that all the representations in F Hare 
faithful. 

Now the dimension function d, giving the dimen­
sions of the spaces h(a') in a canonical direct integral 
decomposition of H relative to a given set a of N 
self-adjoint operators, is the same (except over p.­

null sets in RN) for every representation in F H( a). 15 

If for some set a we have d(a') = 1 almost every­
where with respect to p., we say that a is a maximal 
Abelian set of self-adjoint operators on H (or in 
Dirac terminology, a complete commuting set). Ob­
viously, for every representation of H generated by 
a maximal Abelian set a, Eq. (33) simplifies to 

(f I g) = I. (f I a')(a' I g) dp.(a'), (33') 
RN 

where la') is a unit vector spanning the space h(a'). 
In particular, if we choose to decompose a Hilbert 

space H with respect to a single self-adjoint operator 
a, from Eqs. (23) and (33) we can write the two 
equations 

(f I g) = [:00 d(fl E a , Ig) (34) 

and 

(f I g) = [:00 ~ (f I a', D(j, a' I g) dm(a'), (35) 

where the function m is a real distribution function 
for a Lebesgue-Stieltjes measure over R. Then from 

15 Reference 6, page 221, ff. 
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the properties of Lebesgue-StieItjes integration and 
the Radon-Nikodym theorem we see that the 
Lebesgue-8tieltjes measure 

<II Ma(a, b) Ig) = f d(fl E", Ig) 

= { L (f I a', j)(j, a' I g) dm(a') (36) 
a I 

is well defined for every If), Ig) E H and every 
interval (a, b] C R, and that the function (f I g) 
RN -7 C given by 

(f I g)(a') = L (f I a', J)(j, a' I g) 
; 

is the Radon-Nikodym derivative of the function 
<II E(a) Ig) with respect to the function m, that is 

[d(fl E(a) Ig)/dm](a') = L (f I a', D(j, a' I g) (37) 
; 

[in fact, (36) can be taken as the definition of the 
Radon-Nikodym derivative of (fl E(a) Ig) : RN -7 C : 
a' -7 (fl E", Ig)]. 

For quantum mechanical purposes it will be im­
portant to consider operators of the type P a (a, b), 
defined over a Hilbert space H by 

P a(a, b) = t dE", = Eb - Ea. (38) 

This is a projection operator and from Eq. (36) we 
see that the corresponding projection operator over 
the space H~m is given by 

P,,(a, b) = r ?: la', j)(j, a'i dm(a') 
a 1 

= L:'" Qa.b(a') ~ la', j)(j, a'i dm(a'), (39) 

. where the function Qa.b is the characteristic function 
of the set (a, b], that is ,Qa.b(a') = 1 for a' E (a, b] 
and Qa.b(a') = 0 for a' E1: (a, b]. But since the 
operator L; la', j)(j, a'i is simply lea'), the identity 
on the space fiCa'), it is clear that the projection 
operator P "Ca, b) is represented in fiCa') by the 
operator P ",(a, b) = Qa.b(a')l(a'), and so the family 
P ,,(a, b) If) E ~.'" is given by P a (a, b) If)(a') = 
P",(a, b) la', f) = Qa.b(a') la', f). Thus, from Eqs. 
(36) and (37) we see that the family 1 of identities 
on the spaces fi C a') can be regarded as a sort of 
operator derivative of the operator E(a) with respect 
to the function m. 

Now let Sa C R be the spectrum of the self­
adjoint operator a. From (36) and the fact that 
the resolution of the identity E(a) is constant over 

intervals on the real axis not containing points in 
Sa we see that the only spaces fiCa') in a direct 
integral decomposition that will play any part in 
spectral theory or representation theory are those 
spaces which correspond to an a' E Sa. The number 
d(a'), the dimension of H(a'), for any a' E Sa is 
called the multiplicity of the spectral point a' or 
the multiplicity of the spectrum at a'. The spectrum 
of a is said to be simple if dea') = 1 for all a' E Sa. 
In all other cases the spectrum is said to be multiple. 

The last major question concerning the machinery 
of function space representation theory must now 
be asked: How are arbitrary operators 'Y on a 
Hilbert space H to be represented in terms of func­
tion space representations of H? To study this ques­
tion we first specify a representation of H, say one 
in the set F H(a, p.), where a is a set of N self-adjoint 
operators. This enables us to write the equation: 

(fl'Y Ig) = LN ~ (f I a', j)(j, a' I goy} dp.(a') (40) 

for If), Ig) E Hand Ig-r) = U('Y Ig» E b!.", 
la', g .. J = IU-r)(a') E b(a'). For each specified 
value of a' and j, then, the operator 'Y generates 
a linear functional 'Ya'.; : H -7 C by the relation 
'Ya,.;[/g)] = (j, a'lgoy). If now we define another 
representation of H, say one in the set F H(f3, v), 
where f3 is a set of M self-adjoint operators [in 
particular, we could choose this second representa­
tion to be the same as the one used in (40)], then 
it is clear that the operator 'Y also generates a family 
of linear functionals over this representation, one 
functional for each value of a' and j, specified by 
the relation: 'Y a' .;[(f3' I g)] = (j, a' I g-r), where 
(f3' I g) represents the set of d(f3') functions cor­
responding to the vector Ig) E H in the new rep­
resentation. By a slight abuse of notation we use 
the same symbols 'Ya'.; for the functionals defined 
over H and the ones defined over a representation 
of H. 

In the special case that the operator 'Y commutes 
with all the operators in the set a we see from 
Eq. (8) that the functionals 'Y a'.i are given by 
'Ya,.;[/g)] = 'Ya'.;[(f3 I g)] = (j, a'i 1(a') la', g), 
where 1 is a family of operators 1(a'), one acting 
on each of the spaces H(a'); if 'Y is one of the op­
erators in the set a, say a;, then from Eq. (7) we 
have 'Ya,.;[/g)] = ai.a,.;[/g)] = aW, a'lg). However, 
in general we must deal with the functionals 'Ya'.; 
generated by an arbitrary operator 'Y by using the 
general theory of linear functionals on Hilbert space. 
In many cases it will be possible to express the 
functional 'Ya' .; as an integral operator on a function 
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space representation F H({3, P, B); then, in analogy 
with our previous notation, we can write 

i'a·.;[(8' I g)] 

1 
d(~') 

= E (a', jl1lk, (3')(8', k I g) dp(8'). 
RM k-1 

(41) 

If the set (3 is maximal Abelian, then of course this 
reduces to 

1a·.;[(8' I g)] = 1 (a', jI11{3')(8' I g) dp(8'). (42) 
RM 

If now we have specified two representations of 
a Hilbert space H, say FH(a, p., B) and FH({3, P, D), 
where both a and (3 are maximal Abelian sets, the 
set of all operators 'Y such that the functionals 'Ya' 
can be represented over the space FH ({3, P, D) as 

'Ya·[(8' I g)] = f (a' I 'Y 1{3')(8' I g) dp(8') 
RM 

(43) 

is called the set of Hilbert--8chmidt operators and 
has been studied extensively. 16 It should be em­
phasized, however, that it is not always possible 
to find integral representations for operators (not 
even all bounded operators are of Hilbert-Schmidt 
type). As an elementary but important example we 
have the identity operator: the functional 1 a' is very 
simply given on the function space FH(a, p., B) by 
the delta functional oa' according to the relation­
ship: la.r(a"lg)J = oa.r(a"lg)J = (a'lg), but there 
exists no kernel for an integral operator representa­
tion of I. 

4. CONCLUSION 

The principal advantage of the present formula­
tion of spectral theory and representation theory 
lies in the fact that there is no need to introduce 
unnormalizable "vectors" of infinite length as the 
eigenvectors of operators with continuous spectra. 
By using direct integral decompositions we have 
seen that there exist true unit vectors which serve 
the same purposes, but these vectors are not in 
general in the original space H but instead in the 
decomposition spaces fICa'). With this modification 
the Dirac formulation of Hilbert space theory is 
rigorously brought into accord with the theory of 
von Neumann. 
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APPENDIX 

To show how the methods presented here may be 
further applied and to make the paper more useful 
to quantum field theorists17 we will develop an exten­
sion of von Neumann's resolutions of the identity. 
Given a Hilbert space H and a set a of N self­
adjoint operators on H, we use the canonical 
diagonalization of Eq. (7) to write the bilinear 
functionaIE(f, g, 8), defined for every pair If), Ig) E H 
and every measurable set 8 C RN (measurable, of 
course, with respect to the u-ring used for the 
canonical diagonalization) by the equation 

E(I, g, S) = Is (I, a' I a', g) dp.(a'). (44) 

Here, as previously, for Ih) E H, la', h) = Ih)(a') = 
U(lh»(a') E fICa'), where U : H - fI~." is the 
unitary mapping of the canonical diagonalization. 
The mapping E is clearly a bounded bilinear func­
tional and so defines a bounded linear operator Es IS 

by the equation 

E(f, g, 8) = (fl Es Ig). (45) 

From this definition of Es we see that, if 0 is the 
null set, 

0) 

ERN = I and E Es/ = Ev/s/l (46) 
;-1 

for any countable family of disjoint sets {8d (i.e., 
for 8; n 8 k = 0 when j ~ k). We have, moreover, 
for any measurable sets 8 1, 8 2, eRN, 

(fl Es,r'IS. Ig) = 1 (/, a' I a', g) dp.(a') 
s,(\s. 

= 1 Qs.(a')(f, a' I a', g) dp,(a'), 
s. 

where Qs. is the characteristic function of the set 
8 2• Now defining the family IG) E fI~." by 

IG)(a') = la', G) = Qs.(a') la', g), 

we get 

(II Es,ns. Ig) = 1 (f, a' I a', G) dp,(a') 
s, 

= (/1 Es. IG), 
17 See the remarks of Streater and Wightman on ~. 92 of 

Ref. 4. For another possible application of direct mtegral 
theory, cf. M. Guenin and B. Misra, Helvetica Physica. 
Acta. 37, 269 (1964). 

18 Reference 10, Vol. I, p. 42. 
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where /G) = V-I ClG». But also 

<I / G) = f (j,0I.' 101.', G) dp.(OI.') 
RN 

= r Qs.(OI.')(J,OI.' 101.', g) dp.(OI.'), 
JRN 

and so 

<I I G) = 1 (j,0I.' I 01.', g) dp.(OI.') 
s. 

= (jl Ee. Ig), 
or 

IG) = E s , Iy)· 

Therefore 

(II Es,(\s. Iy) = (II Es,Es • Iy)· (47) 

Now (46) and (47) are the defining conditions for 
what can be called a generalized resolution 01 the 
identity (GRI) , that is, a family E of operators Es 
(they can easily be shown to be projection operators 
by the same sort of reasoning as we have used to 
develop their other properties), one for each measur­
able set S C (RN

, 2:, 11-), which satisfy (46) and (47). 
Each GRI is also a projection valued measure over 
RN (this statement can be understood in the sense 
that the bilinear functional (II Es Ig) is always a 
well defined Lebesgue-Stielties measure over RN

, 

but it can also be given meaning directly in terms 
of the operators Es themselvesI9

), and integrals can 
18 See, for example, p. 888, Ii., of Ref. 16. 

be defined with respect to these measures by standard 
measure theoretical techniques. We can conclude, 
then, that to each set 01. of N self-adjoint operators 
on a Hilbert space H there corresponds a unique 
GRI, symbolized by E(OI.) and defined over RN by 
the canonical diagonalization of 01.. Since the unitary 
mapping U : H ~ b: ,I' simultaneously diagonalizes 
all of the self-adjoint operators in a, any product 
IT; OI.j of finitely many operators 01.; E 01. can be 
written in terms of E(OI.) as 

II OI.j = 1 II OI.~ dE a', a' E RN
, OI.~ E R, 

; RN ; 

and, for a product of unitary operators of the form 
e,a" 01.; E 01., we have 

Finally, corresponding to Stone's theorem, for a 
product of one-parameter groups of unitary operators 
of the form eit;ai, 01.; E 01., tj E R, we have 

IT eil,a, = eiLlllal 

; 

= J. eiLllia., dE. ' E R ' ERN a. 01.; ,01. , 
feN 

or, defining vectors t = (tit '" , tK ) E RK and 
a = (OI.f, ••• , 01./;) E RK

, 
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Transformation from a Linear Momentum to an Angular Momentum Basis for 
Particles of Zero Mass and Finite Spin 

H. E. MOSES 

MIT Lincoln Laboratory, * Lexington, Massachusetts 
(Received 16 November 1964) 

The infinitesimal generators of the inhomogeneous Lorentz group have been given in a basis in 
which the components of the linear momentum operators are diagonal and in another basis in which 
the square of the angular momentum is diagonal for all unitary irreducible ray representations of the 
group. In the present paper we show how the two bases are related for representations corresponding to 
zero mass and any (finite) spin. It will be shown how this relation enables one to integrate the infini­
tesimal generators in the angular momentum basis and thereby permits one to show how the angular 
momentum of a particle changes under the inhomogeneous Lorentz group. In particular, we study 
the way that the angular momentum of a massless particle of any spin appears in translated and 
moving frames of reference. 

1. INTRODUCTION AND SUMMARY 

T HE ten infinitesimal generators of the proper, 
orthochronous, inhomogeneous Lorentz group 

will be denoted by H (the energy), P, (i = 1,2,3-
the components of the linear momentum), J, (the 
components of the angular momentum), and 61, 
(the space-time infinitesimal generators). They 
satisfy the well-known commutation rules 

[H, Pi] = 0 [J2 , Ja] = iJI 

[p" Pj] = 0 [Ja, J 1] = iJ2 

[J i , P,] = 0 [611' 612] -iJa 

[Ji , H] =0 [612, 61a] -iJI 

[J" 61,] = 0 [61a, 611] -iJ2 

W" H] = iP, [J1 , P2] [PI' J 2] = iPa 

Wi' Pj] = i5'jH [J2 , Pa] [P2' Ja] = iPI 

[J), J 2] = iJa [Ja, PI] [Pa, J 1] = iP2 

[JI , 612] (61), J 2] = i61a 

[J2, 613] [J2 , Ja] = i61) 

[Ja, 611] [61a, J)] = i612' (1.1) 

The global form of the irreducible unitary ray 
representations was given by Wigner (Ref. 1) in 
terms of a basis in which the components of the 
linear momentum P, are diagonal. The infinitesimal 
generators are also usually expressed in such a basis 
(see, e.g., Ref. 2). For certain physical applications, 
however, it is useful to work in a basis in which 

the operators H, t = J~ + J~ + J~, J a and p. J = 

PIJI + P 2J 2 + PaJa are diagonal. The way that 
the infinitesimal operators act in such a basis was 
given in Refs. 3 and 4. The principal objective of 
the present paper is to show how the two bases are 
related for the case of particles of zero mass and 
finite spin. We hope in a later paper to give the 
relation for the far more complicated case of non­
zero mass and arbitrary spin. 

Our objective can be reinterpreted in terms of 
more popular language as "expanding relativistic 
plane waves into relativistic spherical waves" and 
vice versa. However, the group-theoretical and 
Hilbert-space treatment used herein permits us to 
evade the notion of plane and spherical waves which 
would occur in a more naive approach. 

One might think that in order to obtain a basis 
in which the square of the angular momentum is 
diagonal, one would need to know the expansion 
before the basis was obtained. Such is the usual 
procedure in nonrelativistic problems. However, in 
Refs. 3 and 5 it is shown that the commutation 
rules (1.1) are sufficient to obtain the angular mo­
mentum basis. Knowing how the infinitesimal gen­
erators act in terms of the linear and angular 
momentum bases enables us to find the relation 
between them. 

It will be useful to show how the infinitesimal 
generators act in both bases for the zero-mass case. 
In Ref. 1 it is shown that the irreducible representa­
tions of the infinitesimal generators are completely 
specified by the sign of the energy E and by the 
number a where a = +8 or -8 where 8 is the spin 

* Operated with support of the U. S. Advanced Research 3 W. Pauli, CERN Rept. 56-31, Geneva (1956). 
Projects Agency. • J. S. Lomont and H. E. Moses, J. Math. Phys. 5, 294 

1 E. P. Wigner, Ann. Math. 40, 149 (1939). (1964). 
t Iu. M. Shirokov, Zh. Eksperim. i Teor. Fiz. 33, 1196 6 J. S. Lomont and H. E. Moses, J. Math. Phys. 5, 1438 

(1957) [English trans!': Soviet Physics-JETP 6, 919 (1958)]. (1964). 
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of the particle. The number 8 is thus either a non­
negative integer or a positive half-odd integer, while 
E = +1or -1. 

In terms of the linear momentum basis we have 
(Ref. 6). 

Let an abstract vector <I> in Hilbert space be 
represented by 1(P) = f(PI' P2, Pa) in the linear 
momentum basis and by F(E, i, m) in the angular 
momentum basis. The variables Pi are continuous 
in the range - co < Pi < + co. The variable E 
is continuous in the range 0 < E < co for E = + 1 
and - co < E < 0 for E = -1. The function 
F(E, i, m) is identically zero except for i = lal, 
lal +1, lal +2, ... and, for a given i, for m = 
-i, -i +1, ... , i-I, j. 

The norm of <I> is 

(<1>, <1» = J; If(P)1
2 

= t; J f~ weE, j, m)1
2

, 

where P = Ipl. Accordingly we shall write 

<I> +4 f(P) +4 F(E, j, m). 
p i 

If A is an abstract operator, then we write 

(P,f)(P) = Pif(P), 

(Hf)(P) = Epf(P) , 

(Jtf)(p) = [ -i(P X "1)1 + P ~1 Pa a ]t(p), 

(J2f)(p) = [ -i(PX"1)2 + P ~2Pa a]t(P), 

(Jaf)(P) = [-i(P X "1)3 + a]f(p), 

(JJlf)(P) = {iP 0:1 + P ~2 Pa a }(p), 

(,§J2t)(P) = {iP 0:2 - P ~1 Pa a }(p), 

(,§Jaf)(P) = Eip o!a f(P), 

where (p x Vh = P20/iJPa - PaO/OP2' etc. 

(1.2) 

A<I> +4 (Af)(P) +4 (AF)(E, i, m) 
p i 

to indicate how operators act in different bases. 
The infinitesimal generators are given in terms 

of the angular momentum basis by' 

(HF)(E, i, m) = EF(E, j, m), 

(JaF)(E, j, m) = mF(E, i, m), 

«J2 + iJ1)F)(E, j, m) = [(j - m)(i + m + I)JfF(E, i, m + 1), 

«J2 - iJ1)F)(E, i, m) = [U + m)U - m + 1)]fF(E, j, m - 1), 

(PaF)(E, j, m) = lEI Lu ~a 1) FCE, j, m) 

+ _1_ [U - m + 1)(j + m + 1)(j - a + l)(j + a + 1)]iF(E . + 1 ) 
i + 1 (2j + 1) (2i + 3) , 1 , m 

+ .! [U - m)(j + m)(j - a)(j + a)J!F(E . - 1 )] 
j (2i - 1)(2i + 1) , 1 , m , 

«P2 + iP1)F)(E, i, m) = lEI L(j ~ 1) [(j - m)U + m + l)JfF(E, j, m + 1) 

_ 1 [(j + m + 1)(j + m + 2)U - a + 1)U + a + 1)]!F(E . + 1 + 1) 
U + 1) (2j + 1)(2i + 3) ,1 , m 

+ .! [(j - m - 1)U - m)(j - a)(j + a)J'F(E . - 1 + 1)J 
j (2i - 1)(2j + 1) , J , m , 

«P2 - iP1)F)(E, j, m) = lEI L(j ~ 1) [(i + m)(j - m + 1)]iF(E, i, m - 1) 

+ _1_ [U - m + l)(j - m + 2)(j - a + 1)(i + a + l)J'F(E . + 1 _ 1) 
i + 1 (2j + 1)(2j + 3) ,J , m 

_ .! [(j + m - l)U + m)(j - a)U + a)JiF(E . - 1 - l)J 
j (2j - 1)(2j + 1) , J , m , 

• J. S. Lomont and H. E. Moses, J. Math. Phys. 3, 405 (1962). 
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( F)(E ' ) - ima lEi ~ F(E' ) 
gla , J, m - j(j + 1) aE ' J, m 

+ _~_. [(j - m + 1)(j + m + 1)(j - a + 1)(j + a + I)J![(. + 1) + lEI ~JF(E . + 1 ) 
j + 1 (2j + 1)(2j + 3) J E aE ,1 t m 

- ~ [(j - m)(j + m)(j - a)(j + a)J!:[. _ lEI ~JF(E . - 1 ) 
j (2j - 1) (2j + 1) JE aE ' J , m , 

«gl2 + igl1)F)(E, j, m) = jf; ~EL [(j - m)(j + m + 1)]1 a~ F(E, j, m + 1) 

__ i_ [(j + m + 1)(j + m + 2)(j - a + 1)(j + a + l)Ji[(. + 1) + lEI ~]F(E . + 1 + 1) 
j + 1 (2j + 1) (2j + 3) J E aE ' 1 t m 

_ ~ [(j - m - 1)(j - m)(j - a)(j + a)]![. _ lEI ~JF(E . _ 1 + 1) 
j (2j - 1) (2j + 1) JE aE ' J , m , 

«gl2 - igl1)F)(E, j, m) = jf; ~EL [(j + m)(j - m + l)]iF(E, j, m - 1) 

+ _i _ [(j - m + l)(j - m + 2)(j - a + 1)(j + a + l)Ji[(. + 1) + lEI ~JF(E . + 1 _ 1) 
(j + 1) (2j + 1) (2j + 3) J E aE ' J , m 

+ ~ [(j + m - 1)(j + m)(j - a)(j + a)J!:[. _ lEI ~-]F(E . - 1 - 1) 
j (2j - 1) (2j + 1) JE aE ' J , m . (1.3) 

We shall now give the relationship between the representatives f(p) and F(E, j, m) such that (Af)(P) 
and (AF)(E, j, m) have the same relation where A is any of the infinitesimal generators. Toward this end 
we introduce the Jacobi polynomials p~a./l) (x) (for notation see, e.g., Ref. 7). For simplicity of notation 
we set 

S(J' m a x) = p<m-a.m+a) (x) , , , i-m 

P = Ipl, 
p = p(sin 0 cos q;, sin 0 sin q;, cos 0). 

Then the relationship between the representatives in the two bases is 

t(P) = 1r-ip-l(l + ~)a t t (!)",+l exp (im1r) 
P i-Ial m--i 2 

X [Ci - m)! (j + m)! (2j + l)]!(Pl + iP2)m-a Se / )F( . ) 
(j _ a)! (j + a)! P J, m, a, Pa P ep, " m , 

F(E ' ) = lEI (!)m+l (-im1r)[(j - m)! (j + m)! (2j + I)]! 
, J, m 7 2 exp 2 (j - a)! (j + a)! 

12.. 1" X 0 dq; 0 dO e-i<m-.,) "(1 + cos O)aS(j, m, a, cos 8)(sin 8)m-a+l 

X f(IEI sin 0 cos q;, lEI sin 0 sin q;, lEI cos 0). 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

Furthermore, 

J; If(P)12 
= ;t;1 mtf J f:IIF(E, j, m)l\ (1.9) 

Much of the remainder of the paper deals with the 
verification of these results. 

so that the norm and inner product are preserved 
in the two bases. Equations (1.7)-(1.9) are the 
principal mathematical results of the present paper. 

7 G. Szego, Orthogonal Polynomials (American Mathe­
matical Society, Providence, Rhode Island, 1959), Colloquium 
Publications, Vol. 23, revised ed. 

It is interesting to note that the functions S(j, m, 
m', x) play an important role in the theory of the 
representations of finite rotations (see, e.g., Ref. 8.) 

A formula which is useful for obtaining the func-

8 A. R. Edmonds, Angular Momentum in Quantum Me­
chanics (Princeton University Press, Princeton, New Jersey, 
1957). 
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tions S(j, m, a, x) is 

S(j, m, a, x) = (-IVI ... [2"'-11(j + m)!] 

X (di+fAldxi+"') (1 - x)i+"(1 + x)i-<·]. (1.10) 

The formula is proved in Appendix I from a similar 
formula for the Jacobi polynomials. Another expres­
sion for S(j, tn, a, x) which is useful is obtained 
from Rodrigues' formula for the Jacobi polynomials 
(p. 67, Ref. 7), 

S(j, tn, a, x) 

== (-1)/-'" .2"'-; (1 - x)-<m-a)(1 + x)-(m+a) 
() - m)! 

X !;-"'m «1 - x)i-a(1 + X)i+OJ. (1.11) 

2. VERIFICATION OF THE 
TRANSFORMATION FORMULAS 

We shall now verify the expressions (1.7)-(1.9). 
The properties of the Jacobi polynomials play an 
essential part. In particular four identities are useful 
for the case that a and fJ are integers. They are 

dP~"·fJ)(x)ldx 

= !(n + a + fJ + I)P!~tl.fJ+1)(x), (2.1) 

(1 - x2
) dP!"·fJ)(x)ldx - [([3 + a)x - ([3 - a)] 

X p!,..fJ)(x) + 2(n + I)P!~~l.fJ-ll(x) == 0, (2.2) 

{(2n + fJ + a][2(n + 1) + fJ + a]x + a2 
- p2} 

X (2n + 1 + fJ + a}p!,,·fJ)(x) 

== 2(2n + fJ + a)(n + l)(n + 1 + fJ + a) 

X P!:ifJ)(x) + 2[2(11, + 1) + fJ + a] 

X [nll + 11,([3 + a) + fJa]P!~ifJ}(x») (2.3) 

(2n + I + fJ + a)(1 - xl!) dP!"·fJ)(x)ldx 

- ![([3 + a + 2)x + a - fJ] 

X (2n + 1 + fJ + a)P!",fJ)(x) 

== [n2 + n([3 + a) + fJa]P!:ifJ)(x) 

- (11, + fJ + a + 1)(n + I)P!!ifJl (x). (2.4) 

The orthogonality relation for the Jacobi poly­
nomials will also be needed 

ill (1 - x)«(1 + xtp!"'I')(x)P!."'I')(x) dx 

2"+1'+1 (n + a)! (11, + fJ)1 
== 2n + a + fJ + 1 nl (n + a + fJ) I 8", ... (2.5) 

Equations (2.1) and (2.5) appear on p. 63 and 
p. 68, respectively, of Ref. 7. Equation (2.3) appears 
on p. 169 of Ref. 9. We shall prove (2.2) and (2.4) 
in Appendix I. 

In terms of the functions S(j, m, a, x) the relations 
(2.1)-(2.5) become 

dS(j, m, at x)/dx = !(j + m + I)S(j, m + l,a,x), 

(2.6) 

(1 - Xll) dS(j, m, a, x)/dx - 2(mx - a)S(j, m, a, x) 

+ 2(j - m + I)S(j, tn - 1, a, x) = 0 (2.7) 

[xj(j + 1) - ma](2j + I)S(j, m, a, x) 

= j[(j + 1)11 - m2]S(j + 1, m, a, x) 

+ (j2 _ ( 2)(j + I)S(j - 1, m, a, x), (2.8) 

(2j + 1)(1 - x') dS(j, m, a, x)/dx 

- [em + l)x - a](2i + I)S(j, tn, a, x) 

= (;>2 _ a')S(j - 1, m, x) 

- [(j + I? - m2]S(j + 1, m, a, x), (2.9) 

Jl (1- x)"'-" (1 +x)"'+«S(j, m,a,x)S(j', m,a,x)dx 
-1 

22"'+1 (j - a)! (j + a)! 
= 2j + 1 (j - m)! (j + m)! 8i ,i" (2.10) 

We shall now prove our formulas (1.7)-(1.9). Let 
us consider all complex functions F(E, j, m) where 
the ranges of the variables E, j, tn are given in 
Sec. 1 such that 

.. if. 2dE i!til .. ~; IF(E, 1, m)1 lEI < Q.). 

The entire set of such functions form a Hilbert 
space. Consider now the functions t(P) defined by 
(1.7). From (2.10) such functions have a finite norm 
given by (1.9). Furthermore, the function F(E, j, m) 
can be recovered from the function t(P) using (2.10), 
the expression for F(E, j, m) being given by (1.8). 

We shall now prove that if F(E, i, m) is replaced 
by (AF)(E, j, m) in (1.7), then t(P) is replaced by 
(At) (P) where A is any of the infinitesimal generators. 

Let us first take A to be H. Then, since 

(HF)(E, i, m) = EF(E, i, m) 

and 
(Ht)(P) == EPf(P), 

substituting into (1.7) leads to a trivial identity. 

»A. Erdlilyi et al., Higher Transcendental Functions (Mc­
Graw-Hill Book Company, Inc., New York, 1953), Vol. 2, 
Chap. 10. 
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Next let A = J a• Using (1.2) and (1.3) and sub­
stituting into (1.7) one again obtains an identity. 

Now let us take A = J 2 - iJ l • Then (1.7) is 
verified for Af and AF if one uses (2.6). When 
A = J 2 + iJh one uses (2.7) to verify (1.7). 

For the case A = P a, the identity (2.8) is used, 
while for A = gja, the relations (2.8) and (2.9) are 
both used. 

For the cases that A = P 2 - iPh A = P 2 + iPI , 

A = gj2 + igjh and A = gj2 - gjl, it follows from 
the commutation rules for J 2 ± iJ l with P a and 
gjs that (1.7) is valid. 

We shall now prove that the space of functions 
t(P) which are defined by (1.7) and which have 
the norm given by (1.9) is the entire Hilbert space 
of functions with the norm (1.9). For if this space 
were not the entire Hilbert space, it would be a 
proper invariant subspace under the entire set of 
infinitesimal generators. But this set of operators 
is irreducible. Thus the space of functions f(p) de­
fined by (1.7) is the entire Hilbert space. This com­
pletes our proof. 

3. INTEGRATION OF THE INFINITESIMAL 
GENERATORS: APPLICATION TO KINEMATICS 

OF THE ANGULAR MOMENTUM OF 
MASSLESS PARTICLES 

Let A be any of the infinitesimal generators. We 
are now in a position to find the finite generator 
ei/U. where {3 is any real number as it appears in 
the angular momentum representation. That is, we 
can find (e i {3AF)(E, i, m). We use the fact that 
eiIlAf(p) can be found explicitly in terms of f(P). 
Indeed, the finite generators were obtained in terms 
of the linear momentum basis before the infinitesimal 
generators (Ref. 1). Thus to find (eiIlAF)(E, j, m), 
we obtain f(P) from F(E, i, m) by using (1.7) and 
(eiMF)(E, i, m) from (e,{3Af)(p) from (1.8). 

We carry out this procedure for A = P a and for 
A = gj3 because, as we now show, these generators 
give information about the way the probabilities 
of angular momentum change when one is in a frame 
of reference translated along the xa-axis, or moving 
along the xa-axis, respectively. 

Let us assume that we are in a state q> ~ F(E, j, m), 
such that 

L f IFCE, j, m)12 dE = 1. 
i.... lEI 

Then if we let !I be an interval along the E axis, 

l IF(E, j, m)12 dE 
~ lEI ' 

is the probability that a simultaneous measurement 
of H, t, and J a gives a probability that the value 
of the energy H is in the interval !I, that the value 
of J2 is j(j + 1) and that the value of J a is m. 

Let us consider ourselves in a frame of reference 
whose origin is translated a distance in a direction 
which can be taken to be the positive z-axis of the 
original frame. 

Then, denoting variables in the original frame of 
reference without a prime and those in the translated 
frame with a prime, the space-time coordinates in 
two frames would be related by the inhomoge­
neous Lorentz transformation 

X~ = Xa - a 

t' = t. (3.1) 

In the new frame of reference the state is given 
by q>' = exp (iapa)q> and thus in the angular mo­
mentum representation by F'CE, j, m) = (exp 
(iaP3)F)(E, i, m). As observed in the primed frame 
of reference, the probability that a simultaneous 
measurement of H, t, and J a would yield a value 
of H in the interval !I, a value of t equal to iU + 1) 
and a value of J a equal to m would be given by 

l IFI(E, i, m)12 dE 
§ lEI . 

In the next section we shall take the case that in the 
original frame of reference the state q> is represented 
by 

F(E, j, m) = g(E)oi.i.o .... m., (3.2) 

where 

(3.2a) 

and where geE) has a sharp peak at E = Eo and 
vanishes for E < Eo - b and for E > Eo + b, 
the real number b being taken as small. 

Thus the state in the original frame of reference 
is an eigenstate of J2 and J a with eigenvalues joUo+ 1) 
and mo respectively, and an approximate "eigen­
state" of H with eigenvalue Eo. We shall then find 
the probability in the displaced frame of reference 
that a measurement of H gives a value in the interval 
Eo - b < E < Eo + b and a measurement of J2 
and J s a value of i(i + 1) and m, respectively. 

We shall also consider the case where the second 
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frame of reference moves with respect to the first 
in accordance with the Lorentz transformation 

t' = t cosh CJJ + Xa sinh CJJ 

X~ = Xa cosh CJJ + t sinh CJJ. (3.3) 

In (3.3) the state in the primed frame of reference 
is given by <1>' = exp (iCJJJja)<I>. Hence F'(E, i, m) = 
exp (iCJJJja)F)(E, i, m). We shall calculate in Sec. 5 
probabilities analagous to those which we have dis­
cussed for translated frames of reference. We shall 
thereby have treated aspects of the kinematics of 
the angular momentum of quantized, relativistic 
particles of mass zero which hitherto have been 
neglected, for general spins largely because of the 
lack of mathematical apparatus to handle such prob­
lems, such apparatus having been provided for the 
first time in the earlier parts of the present paper. 

4. THE CHANGE OF ANGULAR MOMENTUM OF 
A MASSLESS PARTICLE UNDER THE 

TRANSLATION OF FRAME OF REFERENCE 

We first note that 

(exp (iaPa)j)(P) = exp (iaPa)j(P) (4.1) 

Using the procedure suggested in the previous sec­
tion, it follows that 

(exp (iaPa)F)(E, i, m) 

= f!)2"+I[(j - m)! (j + m)! (2j + l)J' 
\2 (j - 8)! (j + 8)! 

"" 
X L H,,(a lEI, m: i, j') 

;'-. 

X [
(j' - m)! (jf + m)! (2i + l)]'F(E" ) 

0' - 8)! (j' + 8)! ,1 , m , 
(4.2) 

( E ..:\ - (1)2(2",.+0 IH ( IE I ." ) 12 Wa a, 0, mo· Jo, JJ - 2" '" a 0, mo· J, 30 

where, as before, 8 = lal = spin of the particle 
and H ",(a, m: i, if) is defined by 

X (1 + cos ola S(j, m, a, cos O)S(j', m, a, cos 0) 

= 11 dx(l - x)",-a(l + x)"'+VC% 
-1 

X S(j, m, a, x)S(j', m, a, x). (4.3) 

Thus the calculation of the function H Cl shows us 
how the state changes under translations of frames 
of reference. Though we have been unable to obtain 
a general expression for this function, one can easily 
calculate this function for small values of ex, m, i, i'. 
This function is just the Fourier transform of a 
polynomial and thus can be expressed in terms of 
spherical Bessel functions. We shall give some cal­
culations shortly. 

Let us now assume that in the original frame of 
reference the wavefunction is given by (3.2). It is 
easily seen that the probability that a measurement 
of H gives a value outside the interval Eo - b < 
E < Eo + b is zero. 

Likewise, the probability that a measurement of 
J a gives a value other than mo is zero. Hence the 
only probability of interest is the probability that 
a simultaneous measurement of H, t, and J a gives 
a value of energy in the region Eo - b < E < Eo + b, 
of t equal to i(j + 1), and of J a equal to mo. We 
shall designate this probability by w" (a, Eo, mo: io, i). 
Since we are assuming that geE) is highly peaked 
at Eo and that b is very small, we may replace E 
which appears in H ,.(a lEI, mo: i, j') of (4.2) by Eo. 
Then from (3.2a) and the discussion in the previous 
section 

X Ci - mo)! Ci + mo)! Cio - mo)! Cio + mo)! (2j + 1)(2io + 1). (4.4) 
(j - 8)! (j + s)! Cio - 8)! Cio + 8)! 

The probability waCa, Eo, mo: io, i) is thus the 
probability that if in the original frame the particle 
had an energy Eo, circular polarization a, z-com­
ponent of angular momentum mo, and the square 
of the angular momentum io(jo + 1), then in a frame 
shifted by a distance a the energy is Eo, circular 
polarization is a, the z-component of angular mo­
mentum is mo, and the square of the angular momen­
tum is i0 + 1). 

There are relationships between the various prob­
abilities which we shall now state and prove. The 
relationships are 

wa(a, Eo, mo: io, 1) = wa(a, Eo, mo: i, io) (4.5) 

= waC -a, Eo, mo: io, J) (4.6) 

= w-a(a, Eo, mo: jo, 3) (4.7) 

= w,,(a, Eo, -mo: io, J). (4.8) 
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FIG. 1. Probabilities of angular momenta, scalar case. 

These relations reduce considerably the number of 
calculations which one must carry out for a complete 
description of the kinematics. 

Equations (4.5) and (4.6) follow immediately from 
(4.3) and (4.4). To prove (4.7) we use (1.10) to obtain 

S(j, m, -a, x) 

= (_1)1-« 2"'-f dl~m (1 _ )f-«(l + X)f+« 
(j + m)! dx,+m X 

= (-I)-200(-I);+"S(j, m, a, -x). (4.9) 

Then (4.7) follows from (4.3) and (4.4). 
To prove (4.8) we again use (1.10) and (1.11) 

to show that 

S(i, -m, a, x) = 2-2"'(_1);-l-a(1 + x)"'-« 

X (1 - x)m+a S(j, m, a, -x). (4.10) 

Equation (4.8) then follows from (4.3) and (4.4). 
We have derived explicit expressions for some of 

the probabilities Wa. To make these expressions more 

1,0,..,.-------------, 
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/ \ 

/ \ 

/ ' / "-

0/>"0 

FIG. 2. Probabilities of angular momenta, neutrino. 

useful, we shall introduce units. (Hitherto, we have 
taken h = c = 1.) Accordingly, Eo is to be replaced 
by Eo/he = 27r/Ao where Ao is the de Broglie wave 
length of the particle. 

For spin-zero cases we have: 

wo(a, Eo, 0: 0, 0) = i~(27ra/Xo), 

wo(a, Eo, 0: 0, 1) = 3i~(27ra/Ao), 

wo(a, Eo, 0: 0, 2) = 5i~(27ra/Ao), 

where in is the nth spherical Bessel function. 

(4.11) 

For spin-! cases (neutrino) we obtain 

wt(a, Eo, !: !, !) = i~(27ra/Ao) + j~(27ra/Ao) 
wt(a, Eo, !: !, t) = 2[j~(27ra/Ao) + f:(27ra/'Ao)]. (4.12) 

For spin-1 particles (photons) we obtain 

w1(a, Eo, 1: 1, 1) 

= ~ {2io( 27r ~J - i2( 27r ~) J + 9j~( 27r ~J } 

= ~ {i5 [ 3il (27r ~) - 2is( 27r ~) J + i~(27r ~) } 

wl(a, Eo, 0: 1, 1) = [io(27r ~J + i2(27r ~) J 

Of course, in the case of photons the de Broglie 
wavelength is just wavelength of the light. 

The simplicity of these expressions is remarkable. 
We have plotted these probabilities in Figs. 1-3, 

"', 
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FIG. 3. Probabilities of angular momenta, photon. 
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using tabulated values for the spherical Bessel func­
tions given in Ref. 10. 

5. THE ANGULAR MOMENTUM OF A MASSLESS 
PARTICLE AS OBSERVED IN A MOVING 

FRAME OF REFERENCE 

We shall now consider how the angular momentum 
of a massless particle changes when observed in a 
frame of reference related to the original frame of 
the homogeneous Lorentz transformation (3.3), give 
(exp (iwgja)F)(E, j, m), and finally obtain probabil­
ities analagous to Wa of the previous section. 

First of all, it will be necessary to obtain 
(exp (iwgja)f)(P) from our knowledge of (gjaf)(P), 
Le., to integrate the infinitesimal generator gja in 
the linear momentum basis. In principle, it would 
be possible to read off the results from the global 
treatment of Ref. 1. If we used the results of Ref. 1, 
however, we should run into the problem of selecting 
the proper linear momentum basis such that the 
infinitesimal generators are given by (1.2) of the 
present paper (Le., "choosing the phase"). Hence 
we prefer to integrate the infinitesimal generator 
directly. The technique which we use can be gen­
eralized considerably. It is based upon a theorem 
about solutions of simple first-order partial dif­
ferential equations in t.wo variables. 

Let us define g", (P) by 

g",(p) = (exp (iwgja)f)(P). (5.1) 

Let us then take a derivative with respect to w. 
We obtain 

CJg",(p)/ow = i(gja exp (iwgja)f)(P) 

= i(gjag.,)(P). (5.2) 

On using (1.2) we obtain a partial differential 
equation for g"" namely 

[%w + EpO/Opa]g.,(P) = O. (5.3) 

Equation (5.3) is a partial differential equation in 
wand Pa. The quantities Pl and P2 are merely 
parameters and are to be regarded as constants. 
Our "initial condition" is 

go(P) = f(P), (5.4) 

which follows from (5.1). To simplify (5.3) we in­
troduce the variable y in place of Pa by 

y = log (Pa + p). (5.5) 

In defining F(Pl' P2, y) by 

g(P) = F(pl! P2, y), (5.6) 

we obtain the very simple partial differential 
equation 

[%w + EO/Oy]F = O. (5.7) 

The general solution of (5.7) is 

F(Pl' P2, y) = G(Pl, P2, W - EY), 

where G(Pl, P2, Pa) is a thus far arbitrary function 
of its arguments. From (5.6) 

g(P) = G(Pl! P2, W - E log (Pa + p». (5.8) 

This equation can also be written 

g(p) = H(Pl, P2, e"'(Pa + p)-'), (5.9) 

where H(pl! P2, Pa) is an arbitrary function of its 
arguments. To find this function H we use (5.4). 
Then 

or 

H(Pl, P2, Pa) 

= f(Pl, P2, t[P;' - (P~ + p~)pm. (5.11) 

On substituting (5.11) into (5.9) we obtain finally 
(exp (iwgja)f)(P) = g.,(P) 

= f(Pl, P2, Pa cosh w - EP sinh w). (5.12) 

Equation (5.12) is "obvious" but still required proof 
of some kind. As mentioned above, the technique 
used in this case can be extended to integrate more 
complicated infinitesimal generators. 

We are now ready to give (exp (iwgja)F)(E, j, m) 
by transforming back and forth between the linear 
momentum and angular momentum representations 
as described in Sec. 3. Since we are interested in 
the case that the particle is in an eigenstate of 
angular momentum in the original frame of refer­
ence, we shall let F(E, j, m) be given by (3.2). Then 

( C gj )F)(E' ) = (1)m+t -a.",[O - m)! 0 + m)! 00 - m)! Cio + m)! (2j + I)(2jo + I)J' 
exp ~w a , J, m 4 e 0 _ 8)! 0 + 8)! 00 _ 8)! 00 + 8)! . Om.m. 

X fir dIJ(coshw - E cos IJsinhw)-Cm+llg(E coshw - EE cos IJsinh w) 

X (1 + cos IJ)2a(sin IJ)2(m-al+1SO, m, a, cos IJ)S(jo, m, a, coshw - E cos IJS~nhw). (5.13) 
cos IJ cosh w - E SInh w 

10 National Bureau of Standards, Tables of Spherical Bessel Functions (Columbia University Press, New York, 1947). 
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It will be convenient to choose a new variable of integration. Thus we let 

F = E(cosh W - E cos 8 sinh w). (5.14) 

It is useful to note that the sign of F is the same as the sign of E. The variable of integration F should 
not be confused with the function F(E, j, m). 

m+l -au" 

(exp (iwJa)F)(E, j, m) = (!)2m+l [E[msi~ ~[sinh2m W 

X [(j - m)! (j + m)! (jo - m)! (jo + m)! (2j + 1)(2jo + I)J!o IrE .. :\ 
(j - s)! (j + s)! (jo - s)! (jo + s)! m.m, a\W, , m. 10, J;, (5.15) 

where ., f Ee
'

I
•

1 
dF 

I a(w, E, m: 10, J) = Fm+1 
Ee- fl Call 

X (E '" F)m+a(F E -.,,)m-a (F) S(· E coshw - F) S(· E - F COshw) e - - e g J, m, a, lEI sinhw Jo, m, a, IFI sinhw . (5.16) 

Let us define P a (w, E, mo: io, j) by 

P (E ...) - I(exp (iwgJa)F)(E, j, moW 
a W, ,mo· 10, J - lEI . (5.17) 

Then 

ip a(W, E, mo: jo, J) dE 

is the probability that if in the original frame of reference the state was given by (3.2), in the moving frame 
the energy is in the interval!J and a measurement of t and J a yields values of j(j + 1) and mo respectively. 
(The probability of finding a particle in the moving frame with a measurement of J a yielding a value other 
than mo is zero. Hence we need not consider this case.) 

We have 
-2al!w 

P ( E·· .) - (1) 2m + 1 -:-=-;-:.-:::-:-.=-e -:-::--,;;-;;::~_ 
a W, , m. Jo, 1 - 4: IE12m+l sinh2(2m+l) W 

X (j - m)! (j + m)! (jo - m)! (jo + m)! (2j + I)(2jo + I) [I (E .. .)[2 
(j-S)!(j+S)!(jo-S)!(jo+S)! a W, ,m,·Jo,J. (5.18) 

(We have dropped the subscript 0 on mo for typo­
graphical simplicity.) 

Without going into details, one can show by 
methods used to prove (4.5)-(4.8) that the following 
"recriprocity relations" are valid. 

P a(W, E, -mj jo, j) = P _a(w, E, m: jo, j) 

= P a( -w, E, m: jo, j). (5.19) 

It is not difficult to evaluate I a and hence P a 

for a large class of functions geE), since the remainder 
of the integrand is a rational function of the vari­
able F. 

The probability density P a depends rather sensi­
tively on the wavefunction geE) through I a [Eq. 
(5.16)]. We shall see this dependence show up as 
a dependence on the "line breadth" for special 
classes of wavefunctions which we shall now con­
sider. 

Let us now consider functions geE) which satisfy 
(3.2a). We require that 

geE) = 0 if E < Eo - b and if E > Eo + b. 

(5.20) 

Subsequently, in order to make explicit calcula­
tions, we shall also require that b is very small and 
therefore it is reasonable to take geE) to be of one 
sign, say positive, in the interval Eo-b<E <Eo+b. 
Furthermore, we shall require that Ig(EW/IEI be a 
constant in the interval Eo - b < E < Eo + b. 
This latter requirement is equivalent to the state­
ment that the probability of finding the energy of 
the particle in a interval within Eo-b<E<Eo+b 
is proportional to the length of the interval. This 
assumption is a common one in the theory of prob­
ability. These requirements lead to the following 
expression for g(E). 

geE) = ([EI/2b)! for Eo - b < E < Eo + b 

= 0 for all other values of E. (5.21) 

The wavefunction of a photon which is emitted 
by an atom would be approximated by geE). The 
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value Eo would be the frequency of the photon and 
2b gives the line breadth in frequency terms (in 
units such that h = c = 1). Indeed, this interpreta­
tion motivates our choice of geE) as above. 

For the moment, however, we shall consider func­
tions geE) which satisfy (5.20) and not the more 
severe restrictions (5.21). It will be convenient to 
introduce nondimensional variables. Accordingly we 
define /I, V, U, h(/I) 

E/Eo = /I, 

b/IEol = u, 

F/Eo = V, 

h(/I) = geE) = g(/lEo). 

Equations (3.2a) and (5.20) become 

f l+V Ih(/I) 12 
d/l = 1 

I-v V 

(5.22) 

(5.23) 

h(v) = 0 for v < 1 - u or v > 1 + u. (5.24) 

We also define the probability Pa(w, /I, m: jo, j) by 
Pa(W, /I, m: jo, j) = lEo/ P a(w, E, m: jo, j). (5.25) 

The quantity 

i Pa(W, /I, m: jo: J) d/l 

is the probability that in the moving frame the 
measurement of the nondimensional energy E/Eo 
will yield a value in the interval d while measure­
ments of t and J a will yield values of j0 + 1) 
and m, respectively. 

Then from (5.18) we obtain 

-2«1'" 

( ...) _ (1)2 .. +1 -=-......,...;e'--~-.,.....,-Pa W, /I, m. }o, J - 4" /l2m+1 sinh2(2m+1)w 

0- m)! 0 + m). 00 - m)1 00 + m)! 
X 0 - s)! 0 + s)! 00 - s)1 00 + s)! 
X 11 a(W, v, m: jo, j)j\ (5.26) 

where 

(_ -... )m-as(. V cosh W - v) X /I - /Ie J, m, a, inh 
vS E<Il 

s(· /I - v COShw) d-
X }o, m, a, v sinh E<Il /I. (5.27) 

The requirement (5.24) on h(/I) will, as we shall now 
see, lead to the Doppler shift in the energy. For 
some values of /I the integrand of (5.27) is identically 
zero. To eliminate that portion of the integrand 

y 

'c 
v 

FIG. 4. Definition of Pi. 

which is identically zero, we must consider the limits 
of the integral as functions of /I. It will be convenient 
to introduce the following functions of v: 

Yl(/I) = /le-'''', 

Y2(/I) = /le+'''', 

Ya(/I) 1 - u, 

Y4(/I) 1 + u. 

(5.28) 

These functions are plotted as curves in Fig. 4. 
These curves are all straight lines. The lines cor­
responding to the functions Yl and Y2 go through 
the origin, the former curve having a slope less than 1 
and the latter having a slope greater than 1. The 
curves given by Ya and Y4, being constants, are 
straight lines parallel to the /I-axis. For a given value 
of /I, the integration goes from Yl to Y2. 

Let us define /I" as the value of /I at which the 
curves Y2 and Ya intersect. Likewise Vb is the value 
of v for which the curves Y2 and Y4 intersect, /Ie is 
the value at which Yl and Ya intersect and /ld is the 
value at which Yl and Y4 intersect. It is easily shown 
that 

1IlI = (1 - u)e-'''', 

Vb = (1 + u)e-'''', 

Pc = (1 - u)e'''', (5.29) 

/ld = (1 + u)e''''. 

There are two possible orderings of the values /Ii. 

/I" < /lb < /Ie < /ld if u < tanh /w/ 

(5.30) 

In Fig. 4 we have taken u < tanh Iwl. In either 
of the two cases (5.30) it follows that 

la(w, /I, m; jo, j) = 0 if /I < /I" or if /I > Vd. 

(5.3!) 
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Hence Pa vanishes for v < Va or v > Vd. Thus the 
Doppler breadth of the "line" is Vd - Va = 2(sinh 
Iwl + u cosh w) as contrasted to the "natural 
breadth" 2u. The "center of the line" is " = cosh 
w - u sinh Iwl as contrasted to v = 1. If the natural 
line breadth u = 0, then one obtains the familiar 
results about the Doppler shift in energy and line 
breadth. It is seen, however, that if u is of the same 
order as Iwl, one will obtain quite different results 
than is given by the usual theory which assumes 
monochromatic light and hence u = O. In the above 
discussion we are extending the language which one 
uses for the photon case. 

Because some of the integrand in (5.27) is zero 
we may replace the lower and upper limits of the 
integrand in (5.27) by Zl(V) and Z2(V), respectively 

Zl(V) = 1 - u for Va < V < VC) 

Zl(V) = Yl(V) = ve- Iwl for Ve < V < Vd, (5.32) 
ziv) = Y2(V) = velwl for Va < V < Vb, 

Z2(v) = 1 + u for Vb < V < Vd' 

Two types of probabilities will prove useful for 
discussion. We shall denote by W,,(w, m: jo, j) the 
total probability that in the moving frame of refer­
ence a measurement of t and J 3 will yield a value 
j(j + 1) and m, respectively. By Va(w, m: jo, j) 
we mean the probability that in the moving frame 
of reference a measurement of H, will yield a value 
in the range Eo - b < E < Eo + b, and measure­
ments of J2 and J a will yield values of j(j + 1) 
and m, respectively. Thus 

= l(1/uvsinh2 w)[ve- IWI - 2vie-!l wl 

X (1 + u)1 + (1 + u)] for Vb < V < Vd' 

= 0 for V > Vd' (5.35) 

Also for u > tanh Iwl, 

Wo(w, 0: 0, 0) = (2/u sinh2 w) 

X {[Iwl - sinh Iwl] + u[coshw - I]} (5.36) 

Vo(w, 0: 0, 0) = (l/u sinh2 w) 

X IIwl - 3 sinh Iwl + 4 sinh llwl 

+ u[1 + 3 cosh w - 4 cosh lw]}. (5.37) 

For u < tanh Iwl 

Po(w, v, 0: 0, 0) = 0 for V < Va 

= (1/2uv sinh2 w)[ve lwl 
- 2vtetlwl 

X (1 - u)l + (1 - u)] for Va < V < Vb, 

= (l/uv sinh2 w)[1 - (1 - u2i] 
for Vb < V < v. 

= (1/2uv sinh2 w)[ve- Iwl 
- 2(1 + u)lvl 

X e-tlwl + (1 + u)] for v. < V < Vd 

= 0 for V > Vd' 

Also for u < tanh Iwl 

(5.38) 

Wo(w, 0: 0, 0) = (l/u sinh2 w){2 Iwl [1 - (1 - ( 2)l] 

- 2u + (1 - ( 2)llog [(1 + u)/(1 - u)]}, (5.39) 

while for tanh !Iwl < u < tanh Iwl 

Vo(w, 0: 0, 0) 

(5.33) = (l/u sinh2 w){ Iwl [1 - 2(1 - ( 2)l] 

- sinh Iwl + 4 sinh llwl 

Let us now consider states which satisfy (5.21). 
For these states 

h(v) = (v/2u)1 

= 0, V < 1 - u or V > 1 + u. (5.34) 

In order to give an explicit calculation we shall 
consider a spin-zero particle with jo = j = mo = m = O. 
The probabilities are particularly easy to compute. 
First we take u > tanh Iwl. Then 

Po(w, v, 0: 0, 0) = 0 for v < Va 

= l(l/vu sinh2 w) [ve I ",I - 2vleil "'l 

X (1 - u)1 + (1 - u)] for Va < V < Ve 

= (2/u sinh2 w) sinh2 lw for Ve < v < Vb 

+ u(l + cosh w - 4 cosh lw) 

+ (1 - ( 2)1 log [(1 + u)/(l - u)]}, 

and for u < tanh! Iwl, 

Vo(w, 0: 0, 0) = (l/u sinh2 w) 

(5.40) 

X [1 - (1 - ( 2)t] log [(1 + u)/(1 - u)]. (5.40) 

The expressions for Wo and Vo simplify consider­
ably if we take u « 1 and w « 1. 

It will be useful to regard u as fixed and w as 
varying. It can be shown from the exact expressions 
that 

Wo(w, 0: 0, 0) = 1 - Iwl/3u for Iwl < u 

= u/lwl for Iwl > u. (5.41) 
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It is interesting to note that Wo decreases with 
increasing w until it reaches a value of i. Then a 
jump occurs at Iwl = 0' to the value 1, after which 
the probability decreases. Thus there is a "resonance" 
for Iwl = 0' (Le., where the Doppler half breadth 
equals the natural half breadth), The discontinuity 
of Wo occurs because we have worked in the limit 
of small quantities. 

Vo exhibits a similar behavior 

Vo(w, 0: 0, 0) = 1 -- 5 Iwl/I2cr for Iwl < cr 
= crllwl for cr < Iwl < 2cr 
= cr2/1wl 2 for Iwl > 2cr. (5.42) 

It is possible to obtain a general expression for 
Wo and Vo for the asymptotic case cr « Iwl « 1, 
(j + 1m!) Iwl « 1, (lal + 1m!) Iwl « 1. In the 
expressions of 1 a one first lets cr -7 0 and uses the 
facts that v" -7 Vl> -7 e-

IOII and v. -7 Vdel"'I, The 
quantities v and ji are replaced by 1 and e"" -7 1 + EW. 

Without going into detail one obtains after some 
juggling 

Wa(w, m: jo, JJ = (!)*'''[S0o, m, a, 0)]2 

X [S0, m, a, 0)]2crllwl (5.43) 

V,,(w, m: jo, j) = (W"'[S0o, m, a, 0)]2 

X [S0, m, a, OWcr2/1w1 2
• 

By comparing these results with the exact results 
of the scalar case treated earlier, these results appear 
to be valid when cr < 1 Iwl « 1. 

Since we have already treated the scalar case, 
we shall consider some results for neutrons and 
photons. 

Wi(w, ±!: 1, !) = lo/Iwl 
View, ±l: 1,!) = lcr2/1wl 2 

Wi(w, ±i: i, !) = lsO'/lwl 
Wj(w, ±!: 1, !) = fiO' 2/1wl 2 

W1(w, 0: 1, 1) = Wt(w, ±I: 1, 1) = cr/lwl 

(5.44) 

VICW, 0: 1, 1) = VI(W, ±I:l, 1) = O'2/1w1 2
• (5.45) 

APPENDIX I: SOME PROPERTms OF 
JACOBI POLYNOMIALS 

In this Appendix we prove some useful properties 
of the Jacobi polynomials. 

Theorem: Let n be a nonnegative integer and 
a and fJ be integers such that n + a ;::: 0, n + fJ ;::: o. 
n + a + fJ ~ O. Then the Jacobi polynomial P!" ,fll (x) 
is given by 

( __ I),,+fl dft+,.+fl 
p!,.,fll(X) = 2"(n + a + fJ)! dxft+a+fl 

X [(1 -- x),,+a(1 -- x)"+Il). (ALl) 

Proof.' We multiply the identity 

[(2n + a + p)x + fJ -- a] 

X [(2n + a + fJ -- 2)x + fJ -- a] 

-- (1 -- x2)(2n + a + fJ) 

-- [(2n + a + p)x + fJ -- a] 

X [(2n + a + fJ - 2)x + fJ -- a] 

+ (2n + a + P)(I -- x2
) = 0 (AI.2) 

by (1 + x)"+ (H(1 -- x)"+fl-1. On using 

(dldx)[(1 + xr a (1 -- xrfl] = -(1 + x)ft+a-l 

X (1 -- x)"+fl-l[(2n + a + fJ)x + fJ -- aJ (AL3) 

and 

(d2Idx2)[(1 + x)"+"(1 -- x)"+IlJ 

= (1 + x)"+<>-2(l __ ~)"+fl-2 

X {[(2n + a + fJ)x + fJ - a] 

X [(2n + a + fJ - 2)x + fJ -- a] 

-- (1 -- x2)(2n + a + fJ)}, 

we obtain 

(1 - x2)(d2Idx2)[(1 + x)"+a(l -- x)"+Il] 

+ [(2n + a + fJ -- 2)x + fJ -- a] 

X (dldx)[(1 + xra(1 -- x)"+fl] 

(AI.4) 

+ (2n + a + fJ)(I + xr a (1 -- X)"+fl = O. (AI.5) 

We differentiate this equation n + a + fJ times. 
After some rearrangement of terms we find 

(1 -- x2)[d2Q(x)ldx2
] 

where 

+ [{J -- a -- (a + fJ -- 2)x] dQ(x)jdx 

+ n(n + a + fJ + I)Q(x) = 0, 

Q(x) = (d"+a+fl /dx,,+a+fl)(1 + xy-+"(1 -- xrll]. 

Thus Q(x) satisfies the same differential equation 
as the Jacobi polynomial P!""lll(X). It thus follows 
that 

p!,.,fl)(X) = CQ(x), 

where C is a constant. To determine C we compare 
the coefficient of the highest power of x in Q(x) 
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with the highest power of x in p~(Z.~) (x). The latter can be obtained from Rodrigues' formula (Ref. 7). 
The theorem then follows. Expression (ALI) appears to be a new result. 

From the theorem, Eqs. (1.10) and (2.1) can be obtained. 

Proof of equation (2.2): We differentiate (AI.5) n + a + fJ - 1 times. On using (AI.I), Eq. (2.2) follows. 

Proof of equation (2.4): We start with the somewhat formidable identity 

2[(2n + a + (3)x + fJ - aJ[(2n + a + (:J - 2)x + fJ - a](2n + a + fJ + 1) - 2(2n + a + fJ + 1) 

X (2n + a + fJ)(I - x2) - (2n + a + (:J + I)[(4n + 3a + 3fJ - 6)x + fJ - aJ[(2n + a + fJ)x + fJ - a] 

- (2n + a + (:J + I)(n + a + (:J - I)(2n + a + (:J - 2)(1 - x2
) = -4[n2 + n(a + (:J) + a(:J](n + a + (3) 

+ (n + 1)[(2n + a + (:J + 2)x + (:J - aJ[(2n + a + fJ)x + (:J - a] - (n + 1)(1 - x2)(2n + a + (:J + 2). 

We multiply this identity through by (I+x)"+a-l X (1 - X)"+~-l and use Eqs. (AL3) and (AlA) to 
obtain 

2(2n + a + (:J + 1) (1 - x2) 

X (d2/dx2)[(1 + x)"+"(l - xt+~] + (2n + a + (:J + 1)[(4n + 3a + 3(:J - 6)x + fJ - a] 

X (d/dx)[(1 + xt+a(1 - x),,+d] - (2n + a + fJ + l)(n + a + fJ - 1)(2n + a + fJ - 2) 

X [(1 + xt+a(I - xr+~] = -4[n2 + n(a + (3) + afJ)](n + a + (3) 

X [(1 + x),,+a-\l - xt+~-l] + (n + 1)(d2/dx2)[(1 + x)"+a+l(1 _ x),,+d+ 1
]. 

One differentiates the above equation n+a+fJ-l times. On using (ALI), Eq. (204) follows. 
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A homology group that determines an upper bound for the number of linearly independent analytic 
functions connected with the sixth-order ladder diagram is here computed. The formalism is that of 
Fotiadi, Froissart, Lascoux, and Pham. Calculations use the standard methods of homology theory. 
We find that there are at most 127 such functions in general. 

INTRODUCTION 

ASTUDY of the analytic properties of individual 
Feynman diagrams, has recently been initiated 

by Fotiadi, Froissart, Lascoux, and Pham. This 
study is more detailed than such investigations in 
the past. The idea is to obtain complete information 
about the amplitudes on all sheets, the discon­
tinuities around all singularities. The works in Ref. 1 
deal almost exclusively with diagraIllS with only a 
single internal loop, and for this case evidence quite 
complete results. When there is more than one inter­
nalloop things are apparently much more difficult. 

We undertake to solve some portion of the prob­
lems associated with a particular Feynman diagram 
containing two internal loops. We essentially liInit 
ourselves to calculating a relevant homology group. 
The rank of the homology group puts an upper bound 
on the number of invariant functions associated with 
the diagram. (If one considers a contour integral 
involving a single complex variable, then whenever 
there is a pole in the integrand the value of the 
integral may be changed by integrating around the 
pole by a different path. The rank of the homology 
group calculated is a generalization of the number 
of such poles, to an integral involving more than 
one complex variable.) The calculation of this group 
is rather technical. The methods used are probably 
sufficient to calculate the homology groups related 
to more complicated diagrams. 

The present work probably is most important in 
so far as it indicates the type of mathematical 
problems one encounters in the homology approach 
to Feynman diagrams. A vast amount of effort must 
still be expended to obtain for this diagram the 
extent of understanding we have of the single-loop 

* Work supported in part through funds provided by the 
Atomic Energy Commission under Contract No. AT(30-1)-
2098. 

t Part of this work was completed when the author was 
with the Department of Mathematics, Massachusetts Insti­
tute of Technology. 

1 D. Fotiadi, M. Froissart, J. Lascoux, and F. Pham (to 
be published). 

cases. Aside from further work on this particular 
diagram, other directions of investigation are to be 
suggested. Possibly there is a better compact mani­
fold to perform the integrals in than the one we 
selected. Maybe there is a better way to calculate 
the homology groups, using the cohomology of 
holomorphic differential forms, for example. Many 
possibilities suggest themselves, and the mathe­
matical tools useful may involve physicists with 
branches of mathematics heretofore largely unknown 
to them. 

MATHEMATICAL TOOLS AND NOTATION 

H,(A, B), Hi(A, B) the singular homology and 
cohomology groups of the pair A, B (B C A) omit­
ting torsion.2 

Tl. Exact sequence of a triple 

---7 Hi+1(A, B) ---7 H,(B, C) ---7 H,(A, C) ---7 

---7 H ,(A, B) ---7 H i-1 (B, C) ---7, 

---7 Hi-I(B, C) ---7 H'(A, B) ---7 H'(A, C) 

---7 Hi(B, C) ---7 H'+1(A, B)---7. 

T2. Mayer-Vietoris exact sequence 

---7 H i+1(A U B) ---7 H,(A (l B) ---7 H,(A) + Hi(B) 

---7 Hi(A U B) ---7 H,_I(A (l B) ---7. 

As a special application of T2 consider M a complex 
analytic open manifold and N a submanifold of 
codiInension one, given by the zeros of a single 
analytic function. Then T2 applies with A '" M - N, 
B '" N, A (l B '" 8 1 X N, A U B '" M. (In general 
8 k denotes the k sphere.) The signs'" imply homo­
topy equivalences. 

T3. Poincare duality. M a compact manifold with 
boundary B and real diInension n. Then Hi(M, B) = 
H"-i(M - B). 

2 A reference for the topology used is P. J. Hilton and S. 
Wylie, Homology Theory (Cambridge University Press, New 
York, 1960). 

941 
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T4. If E is a fibre space with fibre F and base B, 
we denote the situation as 

(F --? E 

1 
B). 

We will mainJ.y use the E!.« terms in the spectral 
sequence. The following two types of Stein manifolds8 

of complex dimension n are used: 

Type 1. All the common zeros of a set of poly­
nomials in a complex affine space (if they form a 
manifold). 

Type 2. A Stein manifold of Type 1 minus all the 
zeros of a polynomial (in the variables of the ambient 
affine space). 

T5. For such a Stein manifold S, Hi(S) = 0, 
i> n. 

T6. Let S be a Stein manifold in eN(Xl' ... , XN) 
of Type 1 or 2 and P a polynomial in Xl, .. , , XN 
and al, ... , aM, ai E eM. It is a reasonable conjec­
ture in algebraic geometry that off an algebraic set 
in eM one may move the ai and the corresponding 
zeros of P in S around and extend this to an isotopy 
of the ambient manifold S. We refer to the a i off this 
algebraic set as being in general position. If we 
assume this then 

Hi(S - N) = Hi(S) + H.-l(N) 

with N = {x E S I P(x) = O} provided N is a sub­
manifold of S in general position and can be pushed 
to infinity (outside any given compact set) by vary­
ing the ai' This follows by the argument of Froissart 
in Ref. 1. In our problem the ai are the parameters, 
external momenta and internal masses. A further 
consequence of the above conjecture is that the 
singularities of Feynman diagrams fall on algebraic 
sets in the variables considered. 

T7. The decomposition theorem of Ref. 1, that 
can be generalized using T6 to some manifolds in a 
Stein manifold. We will want to know the following 
specific manifolds: 

{x. E eN I X~' + ... + X;N = 1, ai integer> O} 

= M(al' ... ,aN) 

{Xi E eN - origin I X~ + ... + x~ = OJ = TBN- l . 

TS. M(al' ... , aN) is homotopic to the wedge of 
IIi (ai - I)SN-l,s (this many spheres joined at a 

3 R. C. Gunning, "Local Theory of Several Complex Vari­
ables," H. Rossi, "Global Theory of Several Complex Vari­
ables." Both are Princeton University notes. 

FIG. 1. The sixth-order ladder diagram. 

point). TBN - l is homotopic to the tangent bundle of 
unit vectors on SN-l. See Appendix 1. 

T9. Consider a nonsingular manifold given as the 
common zeros in eN of gl(X), g2(X), F(x, a), x E eN, 
a E eM. Suppose V g i' (V g2)* = 0 (V is the gradient 
in eN, * indicates complex conjugation, Va is the 
gradient in eM). Define 

V.J.f = VI - t Vg[Vf·(Y'g)*J. 
1 IVgl 

When the equation 

dx = -(V.J.f)*Vaf·da/IVhI 2 

is continuously integrable between values aj and ~ 
along some path and over all the manifold, the 
equation provides an explicit homotopy between the 
manifolds defined for the different values of a. 

THE FEYNMAN DIAGRAM 

Refer to Fig. 1. k and k* are the integration vari­
ables. We do not impose the condition P l + P2 + 
Pa + P 4 = O. The effect of imposing this condition is 
discussed in Sec. S. The numbers will label the 
denominators. We then transform the integration 
into the product of two complex projective spaces: 

(k, k*) --? (x" Yi) E ep~ X ep: where 

by 

a = 1, ... ,4 
Ya = k~ 

X6 = !(1 - e), 
X6 = 1 + k2

, 

Y6 = l[1 - (k*)2J, 

Y6 = 1 + (k*)2. 

(1) 

We "normalize" the k and k* so that we can set 
M~ = M~ = 1, M, the mass in denominator i. For 
simplicity we have assumed Ml equals M 7, an un­
necessary condition. The points realized under this 
mapping into ep6 X ep6 satisfy the equations 

(2) 

Denominators are associated with the points in 
W l X W 2 on which they are zero. When the param-
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eters are off the singularities, the only case we con­
sider, denominator 4 maps into a singular manifold 
in this product WI X W 2, the other denominators 
into nonsingular manifolds. We also consider a 
"desingularized" Feynman diagram with denomina­
tor 4 modified by the addition of a term E(l + k2

) 

(1 + k*2). Under this modification denominator 
4 maps into a manifold nonsingular off the union of 
the manifolds denominators 1 and 7 map into. 

of the eight-dimensional homology group of the 
space comprising the complement in WI X Wli of 
the images of denominators 1 to 7. 

The purpose of this paper is to calculate the rank 

In the Hdesingularized" case we apply T7 to 
{WI X Wli - 1 V 7} == Stl the space WI X W 2 off 
the denominators 1 and 7. In the actual case we 
applyT7 to {WI X W li - 1 V 7V 4} = St2 • ByT7 
the calculation of H.(WI X W2 - 1 V ... V 7} is 
reduced to calculating certain homology groups of 
intersections of the denominators in St l or St2 • 

In particular: 
In the "desingularized" case 

HS(WI X W2 - 1 V ... V 7) 

= Hs(St l ) + 4H7(2 (\ St l ) + H 7(4 (\ Stl ) + 2H6(2 (\ 3 (\ Stl ) + 4H6(2 (\ 5 (\ Stl ) 

ABC D E 

+ 4H6(2 (\ 4 (\ Stl ) + 4H3(2 (\ 3 (\ 5 (\ Stl ) + 2Ha(2 (\ 3 (\ 4 (\ Stl ) + 4Ha(!) (\ 4 (\ 5 (\ Stl ) 

F G H I 
+ H 4 (2 (\ 3 (\ 5 (\ 6 (\ Stl ) + 4H4J2 (\ 3 (\ 4 (\ 5 (\ Stl ) + Ha(!) (\ 3 (\ 4 (\ 5 (\ 6 (\ Stl ) (3) 

J K L 
and in the physical case 

HS(WI X W2 - 1 V ... V 7) = H S(St2) + 4H7(!) (\ S~) + 2H6(2 (\ 3 (\ St2) 

M N 0 
+ 4H6 (2 (\ 5 (\ St2) + 4Ha(!) (\ 3 (\ 5 (\ St2) + Hi2 (\ 3 (\ 5 (\ 6 (\ Sta). (4) 

P Q R 

The essential symmetry between 2 and 3, 5 and 6, 
and !), 3 and 5, 6 is used to give the above formulas. 
The capital letters will label the homology groups to 
be calculated. These will be calculated in the follow­
ing sections, but not in order. The rank of the first 
group we calculate to be 142 and that of the second 
126. Since the initial integration surface is a relative 
cycle in (WI X W2, 1 V ... V 7) there are a possible 
127 functions associated with the diagram if 
PI + P 2 + Pa + p. = 0 is not imposed. 

Section 1 (A, B, D, E, G, 1) 

lea) 1 (e) 

(7) 

(S) 

St
l 

= {L:~ x: = 1 f"'oo.I S4 X S4 by TS; (5) 2 (\ 3 (\ 5 (\ Stl 

L:~ y~ = 1 {L:a 2 

A = Z (an infinite Abelian group on a single genera- = I Xi = 1 '" S2 X S3; G = Z. (9) 
tor). L:~ y~ = 1 

In giving such equations, trivial changes of 1 (f) 
variables will be made without comment. J = H 4 (2 (\ 3 (\ 5 (\ 6 (\ Stl ) 

l(b) 

!)(\ St
l 

= {L:1 x~ = 1", S3 X S4; B = Z. (6) 

L:~ y~ = 1 

2 (\ 3 (\ 5 (\ 6 (\ Stl 

= {L:~ x~ = 1 ,..., S' X S2; J = Z. 
L:~ y~ = 1 

(10) 
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2(a) 

Section 2 (C, F, H) 

~s 2 1 
L..."l Xi = 4" 

~s 2 1 
L..."l Yi = 4" 

Li XiYi + t(M2 
- 2)xsYs 

(11) 

+ 1M2(XS + Ys) = -1 - iM2 - E. 

By arguing along the lines of T9 we may work with 
the following set of equations instead: 

{
L~ x~ = 1 

4 (1 St l = L~ Y~ = 1 

. Li XiYi + axsYs = 0, (i ¢ 1. 

(12) 

If one chooses to a void an analysis along the lines of 

T9 one may work with the original set of equations. 
In looking at group M we will work with a set of 
equations quite analogous to this set. From now on 
we will denote by 7r the projection from a point 
on a surface to its Y coordinates. In this case this 
map gives a fibration of fibre I'oJ S3 off the non­
singular submanifold 

LR = {Li y~ + a?y~ = OJ. (13) 

Over LR there is a fibration of fibre I'oJ S2. Each of 
these two fibrations is a manifold, the second a sub­
manifold of 4 (1 St l • 

L~ y~ = I} =} Ys = ±(1 - a?)-!. (14) 
~4 2 + 2 2 ° L..."l Yi a Ys = 

We now apply T2 to 4 (1 St l and the submanifold 
7r-

l (LR): 

-'>Hi(BR) -'> H.{(S3 -'> M - R } + H.(R) -'> H,(M)-'> 
17r (15) 

S'4 - LR) 

with 

S,4 = {L~ y~ = I}; 

R is fibred as follows 

(S2 -'> R 

1 
LR I'oJ S3 U S3). 

The E! .• term in the spectral sequence for R is 
E! .• = ZA(PlB(.l, where 

A(P) = 2, p = 0, 3 
= 0, p ¢ 0,3 

B(q) = 1, q = 0,2 (16) 
= 0, q ¢ 0,2 

and for the complement of R, M -R, E! .• =ZA(p)B(Q), 

Thus we see that C = Zs. 

2(b) 

{
L~ x~ = 1 

2(14(1 St l = Li y~ = 1 

L~ x,y, + ax4Y4 = 0, a2 
¢ 1. (19) 

Proceeding as in 2(a), with a few trivial changes of 
the form i -'> i-I we find that F = Z5. 

where 2(c) 

A(P) = 1, p=O B(q) = 1, q = 0, 3 
= 2, p=1 =0, q ¢ 0,3 

(17) 
= 3, p=4 
=0, p ¢ 0,1,4 

using T7 on S'4 - LR. In all the fibrations we deal 
with, 7r1, (base) acts trivially on the homology of the 
fibre. 

A portion of (15) is now evidenced, 

° -'> Z3 + ° -'> H 7(M) -'> Z2 -'> 0. (18) 

2 (1 3 (1 4 (1 St l = M 

We are forced to change notation between sections; 
analogous objects in different sections may have the 
same name. Retracing 2(a), 

-'>Hi(BR) -'> H;{(S3 -'> M - R I + H,(R) -'> Hi(M) -'>; 

1 
(S2 -'> R 

1 (21) 
S'2 - LR) LR I'oJ Sl U Sl). 
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A(P) = 2, P = 0, 1 
= 0, p ~ 0, 1 

B(q) = 1, q = 0,2 
= 0, q ~ 0,2. 

(22) 

The E2 term for M - R is ~ = ZA(l'lBCq) with 
p,q JliICl 

A(P) = 1, p = ° B(q) = 1, q = 0, 3 

A portion of the sequence 

-+ H,(BR) -+ H,(M - R) + H,(R) -+ H,(M)-+ 

now is 

(28) 

= 2, P = 1 
= 3, p = 2 

= 0, q ~ 0, 3 (23) By the same argument as in 2(c), f = OJ I = ~. 

= 0, P ~ 0,1,2 

and (18) is replaced by 

0-+ Z3 + 0-+ Ha(M) -+ Z2 -4 Z2. (24) 

We need to know map f to deduce Ho(M). f is 
equal to zero. One way to see this is by considering 
the symmetry transformation x -+ -x, Y -+ y. 
Under this transformation, H 4 (BR) changes sign and 
H4(M - R) does not. 

Then, H = ZO. 

Section 3 (1, K, L) 

3 (a) 

2 (\ 4. (\ 5 (\ Stl = M 

{
2:~ x; = 1 

= 2:: y~ = 1 

XIYl + X2Y2 + axaYa + {3X4Y4 = 0, 

1 ~ ci ~ {32 ~ 1. 

Again try to fibre over y. Off 

LR = J y~ + ?Ia + a?yi + (32y! = ° 
l 2:~y~=1 

(25) 

there is a fibre space of fibre"" S2. 7r-
I (LR) is a non­

singular manifold R fibred over LR with fibre '" Sl. 

(Sl -+R 
I hasE2 = ZA(I')B(a) with 4- ..... 

LR) 

A(P) = 1, p = 0, 1 
= 4, p = 2 
= 0, p ~ 0, 1,2 

B(q) = 1, q = 0, 1 
= 0, q ~ 0, 1. 

3(b) 

2 (\ 3 (\ 4. (\ 5 (\ Stl 

{

2:: x! = 1 

= 2:~ Y! = 1 

XIYl + ax2Y2 + {3XaY3 = ° 
where 1 ~ cl ~ {32 ~ 1; 

LR = { 2:~ y~ = 1 

y~ + ciy: + {32y: = 0. 

(Sl-+R 
! has E! ... = ZA(p)B(Q) with 

LR) 

A(P) = 1, p = ° B(q) = 1, q = 0, 1 

(29) 

= 5, p = 1 = 0, q ~ 0, 1. (30) 
= 0, p ~ 0,1 

For the homology of LR see Appendix 1. 

(S2 -+M - R 
! hasE!.a = ZA(p)B(Q) with 

S'2 - LR) 

A(P) = 1, p = 0, 1 
= 6, p = 2 
= 0, p ~ 0, 1,2 

B(q) = 1, q = 0,2 
= 0, q ~ 0,2. 

(31) 

-+~~XR)-+~~-R)+~OO-+~~-+ 

yields 

(32) 

f is equal to zero for the same reason as in 3(a). 
(26) Thus, K = Zll. 

For the homology of LR see Appendix I. 

(S2 -+ M - R 
! basE:.« = ZACP)BCtZ) where 

S,3 - LR) 

A(P) = 1, P = 0, 1, 2 
= 5, p = 3 

B(q) = 1, q = 0, 2 
= 0, q ~ 0, 2. 

= 0, p ~ 0, 1,2,3 
(27) 

3 (c) L = H3(2 (\ 3 (\ 4. (\ 5 (\ 6 (\ Stl ) 

2 (\ 3 (\ 4. (\ 5 (\ 6 (\ Btl 

12:~ X~ = 1 

= 12:~ ~ = 1 

XIYI + ax2Y2 + {3xaY3 = ° 
(33) 
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where 1 ~ cl ~ fJ2 ~ 1; 

LR = { y~ + y~ + y~ = 1 

y~ + (iy~ + fJ2y~ = 0. 

(SO~R 
I has E2 = ZA(p)B(o) with 
~ 1',(1 

LR) 

A(P) = 1, p = ° 

H7(WI X W2 , (0) ~ H7(4 V 00, (0) 

II by T3 
o 

~H8(WI X W2 , 4V (0)-4H8(W1 X W 2 , (0). (38) 
II 
Z 

In Appendix II we show g = 0 so that 

H8(WI X W 2 , 4 V (0) = H7(4 V 00, (0). 

= 5, p = 1 
= 0, p ~ 0, 1 

B(q) = 2, q = ° 
= 0, q ~ 0. (34) We now look at the map 7r on 4. This yields a 

fibration of fibre'" S3 except where y satisfies one of 
the three conditions: 

(S' ~ M - R 
I has E2 = ZA(p)B(o) with 

.,£. 2'.(1 

S,2 - LR) 

A(P) = 1, p = 0, 1 
= 6, p = 2 
= 0, p ~ 0, 1,2 

B(q) = 1, q = 0, 1 
= 0, q ~ 0, 1. (35) 

~ H,(BR) ~ H,(M - R) + H,(R) ~ H,(M) ~ 

yields 

o ~ Z6 ~ H 3(M) ~ Z10 -4 (Z7 or Z6) ~. (36) 

The doubt indicated by the parentheses arises be­
cause we have not calculated the differential d2 in the 
relevant spectral sequence. f has rank 5. We do not 
indicate the proof of this; it is similar to the argu­
ment that follows Eq. (53). 

Thus we have L = Zll. 

Section 4 (M) 

4(a) 

Groups M through R are more difficult to cal­
culate than those we have already calculated. The 
procedure, however, is quite similar. 

! 
,",S 2 1 

St
2 

= ~1 X, = "i 

,",s 2 1 
~1 y, = "i 

_ {Li x,y, + !eM2 - 2)xsys 

+ i~(xs + Ys) = -1 - tM2 

(37) 

00 denotes the "hyperplane at infinity" in WI X W 2 

equal to 1 V 7. ByT3, H S (W1 X W2 - 4 - (0) = 
H S (W1 X W 2 , 4 V (0). By Tl 

(39.1) 

In case (a), 7r-
1(pt.) '" S2 and is a nonsingular 

manifold. 

4 2 (M2 _ 2 M2)2 
(b) ~ y, + 2 Ya + T = 0, 

(39.2) 

(
1M2 

M2 ) -4 - ""8 - T Ys ~ 0. 

In case (b), 7r-
1 (pt.) '" pt. and is a nonsingular 

manifold. 

4 2 (M2 - 2 M2)2 
(c) ~ y, + 2 Ys + T 

= 4( -~ - ~ M2 _ ~2 YaY 

(
1 M2 M2) 

-4 -""8 - TYs ~ 0 (39.3) 

Incase (c), 7r-
1(pt.) "'pt. and isa singular manifold, 

singular at a single point. 
A little algebra shows that (a) does not occur, (c) 

occurs when Ys = -t, and (b) occurs when Ys = 0 1 

and Ys = O2 where 0 1 and O2 are distinct values not 
equal to ±t. Define LRI equal the manifold in 
L~ y~ = i with Ys = 0 1 or O2 and LR2 equal the 
set of V's in L~ y~ = 1 with Ys = -to Let p equal 
the point with Ys = -!, Ya = 0, a ~ 5 and SRI equal 
the union of the singular points over LR2 , one point 
in SR2 for each point in LR2 • Finally define SN = 
SR2 V 7r-

1(p). Algebraically one verifies that 4-SN 
is a nonsingular manifold. Look at the exact sequence 

H 6(4 V 00, (0) 

~ H 6(SN V 00, (0) ~ H7(4 V 00, SN V (0) 

~H7(4V 00, (0)~H7(SNV 00, (0). (40) 
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The fourth term indicated is what we wish to know. We will calculate the second and fifth terms to be Z' 
and 0, respectively. We will calculate the third term to be ZS. The first term is zero, for, looking at the 
continuation of Eq. (38), 

HS(W1 X W2 , 00) --+ H S(4. V 00, 00) --+ H7(Wl X W2 , 4 V 00). 
II II by T3 and T5 (41) 

° ° 
Therefore H7 (4 V 00, 00) = Z' and M = Z'. 

4(b) 

We look at a few terms in the exact sequence 

--+ Hi(SN V 00, 1I'-lCp) V 00) 

--+ Hi(SN V 00, 00) --+ Hi(1I' -lCp) V 00, 00) --+. (42) 

We first study 

Hi(1I' -lCp) V 00, 00) 

--+ Hi(1I' -lCp) V 00, 11' -lCp) (\ SR2 V 00) 

--+ H i(1I'-lCp) V 00, 00) --+ 

--+ Hi(1I' -lCp) (\ SR2 V 00, 00)--+ 

H i(1I'-lCp) (\ SR2 V 00, 00) = Z for i = 0 

= 0 for i ¢ 0 

Hi(1I' -lCp) V 00, 00) 

= H i(1I'-lCp) V 00, 1I'-lCp) (\ SRI V 00), i> 1, 

H i(1I'-lCp) V 00, 1I'-lCp) (\ SR2 V 00) 

= HS_i(1I'-lCp) - 1I'-lCp) (\ SR2) 

= Z, i = 6,4,3 

= 0, i ¢ 6, 4, 3. 

See Ref. 4 for the last result. 

(43) 

We next consider Hi(SN V 00, 1I'-1(P) V 00) 

Hi(SN V co, 11' -lCp) V 00) = H S- i (SR2 - 11' -lCp) 

= H 6 - i (LR2 - p) 

(44) 

= Z, i = 6, 4, 3, 1 

= 0, i ¢ 6, 4, 3, 1. 

Referring back to Eq. (42) we see 

H 6(SN V 00, 00) = Z2, 

H7(SN V 00, 00) = O. 

4(c) Study of H7 (4 V 00, SN V 00) 

H7(4 V 00, SN V 00) = H7(4 - SN). 

(45) 

We now use the discussion following T2 to write 

--+ H,(BR1) + H i(BR2) --+Hi {(S3 --+ 4 - SN - Rl - R2 } + Hi(R1) + H i(R2) 

--+H M - SN)--+ with 

We have the fibration for R1 , 

Cpt. --+ Rl 
! '" LRI '" S3 V S3 

LR1) , 

with E! .• = Z .. t(,,)B(.) where 

(47) 

! (46) 
S" - LRI - LR2) 

ACp) = 1, p = 0,2,3,5 
= 0, p ¢ 0,2,3,5 

B(q) = 1, q = 0, 2, 3, 5 (48) 
= 0, q ¢ 0, 2, 3, 5 ; 

H,(S,4 - LRI - LR2) 

= H,(S" - LR2) + Hi-1(LR1) by T6, 

Hi(S" - LR2 ) = HS-i(S" V 00, LR2 V 00) by T3. 

4 N. Steenrod, The Topology of Fibre Bundles (Princeton 
University Press, Princeton, New Jersey, 1951). 
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Look at the sequence 

----tHi(S'" V <Xl, <Xl V LR2) 4 Hi(S'" V <Xl, <Xl) ----t Hi(LR2 V <Xl, <Xl) ----to (49) 

Note that Hi(LR2 V <Xl, <Xl V p) = Z when i = 6, 4, 3, 1; 

Equation (49) now looks like 

= 0 when i ~ 6, 4, 3, 1. 

G I ----t 0 ----t 0 ----t G 2 ----t 0 ----t 0 ----t G 3 ----t 0 ----t Z ----t G" ~ Z ----t Z ----t G 5 ----t 0 ----t 0 ----t G 6 ----t 0 ----t Z 

Map r" is shown to be zero in Appendix II 

Hi(S'" - LR2 ) = z, i = 0, 1,4 

= 0, i ~ 0, 1,4. 

Then 

(S3 ----t 4- - SN - RI - R2 

! 
S,4 - LRI - LR2) 

has E; .• = ZA(p)B(a) with 

A(P) = 1, p = 0 
= 3, p = 1,4 
= 0, p ~ 1,4,0 

B(q) = 1, q = 0,3 
= 0, q ~ 0,3. 

(51) 

If we knew d2 and d3 in (48) we would know E;.a' We 
claim d3 = 0 as the bundle has a cross section. The 
cross section can be chosen as 

(Ya, Ys = -!) ----t (Ya, Ys, X a, xs) 

(Ya, -!) ----t (Ya, -!, Ya, -!) 
a = 1, ... ,4. 

(52) 

Another argument that shows that d2 and d3 are 
both zero is given after (60). It then follows that 
H s(R 2 ) = Z". We now write a portion of the 
sequence (46) 

o ----t (0 or Z) ----t Z3 ~ H 7 (4- - SN) ----t Z4 ----t O. (53) 

We have here made the convention that we set 
Hi(R) equal zero and in calculating Hi(SI X R) 
keep only terms from HI(SI) and not HO(SI) as 
these terms automatically cancel. We use this con­
vention henceforth. We need to know the rank of i. 
It is 2. To obtain this we consider the subspace of 4-
satisfying L:~ IXi\2 = M(y) where M(y) is a con­
tinuous positive function whose numerical value is 
chosen large enough so that 71'-I(pt.) """ TBa. We will 
have to avoid LRI where this is impossible. We then 
map a sequence like (46) but written for this sub­
space into (46). Using the fact that one of the maps 
carries Ha(TBa) isomorphically into Ha(S3), Hs(SS) 

in the fibre of 

(Sa ----t 4- - SN - RI - R2 

! 
S,4 - LRI - LR2), 

(50) 

Ha(TBa) in the fibre of the term corresponding to 
this, we deduce the rank of i to be 2. 

Thus, M = Z4. 

Section 5 (N, 0) 

5(a) N = H 7 (2 n St2 ) 

We have here made the assumption that (54) repre­
sents 2 n St2 faithfully enough-using an argument 
like that in T9 on the singular manifolds involved. 
Four things make this seem legitimate. 

(a) The first two equations are identical to the 
exact general case. 

(b) The third equation has the same quadratic 
terms as the exact system, missing only terms linear 
in the variables, and therefore has the same inter­
section with the "hyperplane at infinity." 

(c) The exact system and this system have singular 
loci of the same type. 

(d) They have isomorphic associated "desingular­
ized" manifolds. 

We have checked this assumption at least so far as 
it applies to the homology group of interest. 

H i (2 n St2) = H 14
-

i (2 V <Xl, 4- V <Xl) 

o ----t H6(4- n 2 V <Xl, <Xl) ----t H7 (2 V <Xl, 4- V <Xl) ----t 

-4 H7 (2 V <Xl, <Xl) (55) 
/I 
Z. 

By Appendix II, g is onto. 

N = Z + H6 (4- n 2 V <Xl, <Xl). 
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Define similarly to the last section 

LRI = {L:~ y~ = 1, L:~ y! + ely! = 0 I . 
The fibre over LRI is nonsingular I"'oo.J pt., 

LR2 = {L:~ y~ = 1, L:~ y~ + ely! = II· 
The fibre over LR2 is I"'oo.J pt. and singular at a single point. SN is the union of the singular points over LR2. 

Rl = 7I"-1(LR1), R2 = 7I"-1(LR2) 

---? H3(SN U 00, (0) ---? H6(4 (\ 2 U 00, SN U (0) ---? H6(4 (\ 2 U 00, (0) ---? H6(SN U 00, (0), 
II II (56) 
o 0 

H6(4 (\ 2 U 00, (0) = H6(4 (\ 2 U 00, 00 USN) = H6(4 (\ 2 - SN). 

(pt. ---? Rl 

L hasE! .• = ZA(p)B(.) with 

LR1) 

A(P) = 2, p = 0, 2 
= 0, p ~ 0,2 

(TBa ---? R2 

B(q) = 1, q = 0 
= 0, q ~ O. 

L hasE! .• = ZA(p)B(a) with 

(57) 

LR2) 

A(P) = 1, p = 0,2 
= 0, p ~ 0,2 

B(q) = 1, q = 0,2,3,5 
= 0, q ~ 0, 2, 3, 5. 

(58) 

(SS ---? 4 (\ 2 - Rl - R2 - SN 
L 

S'S - LRI - LR2) 

hasE!.a = ZA(p)B(a) with 

A(P) = 1, p=O B(q) = 1, q = 0,3 
=3 p = 1 = 0, q ~ 0, 3. 
= 4, p=3 
= 0, p ~ 0, 1,3 (59) 

The relevant Mayer-Vietoris sequence is 

Z2 -4 Z4 ---? H 6(4 (\ 2 - SN) ---? (Z or 0) ---? O. (60) 

The rank of k can be seen to be one by looking at the 
two terms preceding it in the series, or by an argu­
ment similar to that after (53). The doubt indicated 

by (Z or 0) is due to our lack of knowledge about 
d2 in (58). This is now investigated. The fibration of 
(58) is a trivial fibration since LR2 can be shrunk 
to a point in S,a - LRI in the construction following 
(53). 

Therefore d2 
= ° and N = Z5. 

(61) 

H 6(2 (\ 3 (\ St2) = H 6(2 (\ 3 U 00,4 U (0). 

As in 5(a) define 

LRI = {ys = ±(1 - a?)-l} 

LR2 = {Ya = 0 I. 

SN is the union of singular points over LR2 

o ---? H 5 (2 (\ 3 (\ 4 U 00, (0) 

---? H 6(2 (\ 3 U 00, 2 (\ 3 (\ 4 U oo)---? 

---? H 6(2 (\ 3 U 00, (0). 

Therefore 

II 
Z 

(62) 

o = Z + H 5(2 (\ 3 (\ 4 U 00, (0) 

---? H4(SN U 00, (0) ---? H5(2 (\ 3 (\ 4 U 00, SN U (0) ---? HSC2 (\ 3 (\ 4 U 00, (0) ---? H5(SN U 00, (0) 
II n 
o 0 ~~ 
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o = Z + H 5(2 (\ 3 (\ 4 U CD, SN U CD) 

= Z + H,(2 (\ 3 (\ 4 - SN). 

(pt. ~Rl 
I hasE2 = ZA(lll B (Q) with .J.. p,q 

LR1) 

A.(p) = 1, P = ° 
= 3, p = 1 
= 4, P = 2 
= 0, p;e 0, 1,2 

B(q) = 1, 
= 0, 

The relevant Mayer-Vietoris sequence is 

q = 0,3 
q ;e 0, 3. 

(66) 

Z -4 Z4 ~ H 5(2 (\ 3 (\ 4- - SN) ~ Z2 -4 Za. (67) 

A.(p) = 2, P = 0, 1 
= 0, p;e 0, 1 

B(q) = 1, q = ° 
= 0, q;e 0. 

k has rank 1 by the same argument as (53) and g 
(64) has rank 1 similarly. 

(TBa ~R2 
t hasE!,q =~.ZA(ll)B(.) with 

LR2) 

A.(p) = 1, P = 0, 1 
= 0, p;e 0, 1 

B(q) = 1, q = 0,2,3,5 
= 0, q;e 0,2,3,5. 

(S3 ~ 4- (\ 2 (\ 3 - SN - RI - R2 

t 
S,t - LRI - LR,) 

(65) 

Thus we have 0 = Z&. 

Section 6 (P, Q) 

6 (a) P = H6(2 (\ 5 (\ St2 ) 

2 (\ 5 (\ St2 = {I:: x~ = 1 
I:d/. = 1 

- {XIYl + X2Y2 + cxxaYa + (:JX'Y4 = 1, 

where 1 ;e cl ;e {32 ;e 1; 

(68) 

H;(2 (\ 5 (\ St2) = HI2-i(2 (\ 5 U CD, 4 U <X»; 

4 denotes 4 (\ 2 (\ 5. 

HO(2 (\ 5 U <X>, (0) ~ HO(4 U 00, (0) ~ H 6(2 (\ 5 U <x>, 4 U (0) -4 H 6(2 (\ 5 U <X> , <x». 

II II (69) 

° Z 

f is onto by an argument as in Appendix II. 

P = H 6(4 U <X>, (0) + z. 
Now looking at the fibration 1r and considering the 
three types of singular places as in (39) 

(a) none 

(b) LRI = J I:~ Y~ = 1 

1u~ + Y: + y:(X' + y!{3' = ° 
with contractible nonsingular fibre. 

(c) LR2 = { I:~ Y! = 1 
y~ + Y~ + (X2y: + {32y! = 1 

with contractible fibre singular at a single point. 
The union of singular points is SR,. 

LRI is analyzed in Appendix 1. 

LR, = {(I - (X2)y; + (1 - (32)y! = ° 
Ya = ± [ - (1 - (32) / (1 - (X2)]tY4' 

(70) 

Thus LR2 looks like two S2,S joined along SM = 
{Ys = Y. = o} and has 

Ho(LR2) = Z 

H 2(LR2) = Z3 

H,(LR2) = 0, i ¢ 1,2 

SN = SR2 U 1r- 1(SM) 

RI = 1r-1(LR1), R2 = 1r-1(LR2 - SM) 

H4(4 U 00, CD) ~ H4(SN U co, co) 

" II ° Z2 

~ HII(4 U <X> , SN U (0) ~ HfU U CD. <X» ~ 

~ HII(SN U CD. CD) -4 H6(4 U CD. SN U CD). (71) 
II 
Z 

We now deduce the indicated values of the second 
and fifth terms in the above sequence and calculate 
the rank of k to be one. Therefore 

HII(4 U <X>, co) = HII(4 U CD, SN U CD )/Z2. 

Look at 

~ H'(SN U CD, 1r-1(SM) U CD) ~ H'(SN U 00, co) 

~ H'(1r-1(SM) U co, <x»~. (72) 
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Studying the first term 

H'(SN U co, 7r -1(SM) U co) = H 4_,(SN - 7r -1 (SM)) 

H,(SN - 7r-1(SM) = Z\ i = 0, 1 

=Z\ i=2 (73) 

= 0, i;:o!: 0, 1,2 

by T6. Studying the third term 

-+ Hi(7r -1 (SM) U co, SR2 (\ 7r -1 (SM) U co) 

-+ H'(7r -1 (SM) U co, <Xl) 

-+ H i (SR2 (\ 7r -1 (SM) U <Xl, <Xl) -+ (74) 

H'(7r -1(SM) U ex> , SR2 (\ 7r- 1(SM) U co) 

= H S_ i (7r-
1(SM) - SR2) 

H'(SR2 (\ 7r -l(SM) U ex> , ex» = 0, i;:o!: 1, 2 

= Z, i = 1,2, 

7r-1(SM) - SR2 is a fibre space 

(TB2 -+ 7r -1(SM) - SR2 

! 
Sl "" SM) 

with E!.Q = ZA(p)B(Q) where 

A(P) = 1, p = 0, 1 
= 0, p;:o!: 0, 1 

BCq) = 1, q = 0, 3 
= 0, q;:o!: 0, 3. (75) 

We deduce 

H'(7r -1 (SM) U co, ex» = Z, 

= 0, 

H'(SN Vex>, 7r -ICSM) U ex» = 0, 

i = 5 

i=4 

i = 5 

= Z\ i = 4. 

We then find 

H 5(SN U co, ex» = Z and H4(SN U ex> , ex» = Z2 

provided in 

H S(7r -1(SM) Vex>, ex» 

-4 H'(SN V co, 7r -l(SM) U ex», 

f is the zero map. To show it is, map into 
! 

HS(7r -ICSM) (\ SR2 U ex>, ex» 

!::: 
-+ H4(SN U <Xl, 7r -1 (SM) (\ SR2 U ex» 

and note 

HS
(7r -1 (SM) (\ SR2 U <Xl, ex» = 0. 

Now to study k in (71). We consider the subset of 4.: 

{
L~ x! = 1 

4.' = Yl = cosh X, Y2 = i sinh X, iys = Y4, X real 

Xl cosh X + iX2 sinh X + OlXaYa + i{3x4Ya = 1. 

There is a nonsingular fibration by 7r over all 4.' 
with fibre S2 except over Ya = 0. Let 7r -1 ({ Ya = o}) = 
(SN)'. Now look at the maps 

H 5(4. U <Xl, <Xl) -+ H 5(SN U <Xl, <Xl) ~ H S(4. V <Xl, SN U <Xl) 
.J, !::: ! 

H 5(4' U <Xl, <Xl) -+ H 5«SN), V <Xl, <Xl) on~ H 6(4.' U <Xl, (SN), U <Xl). (76) 
II II 

Z Z 

The isomorphism and onto map are geometrically 
interpretable. To proceed to our Mayer-Vietoris 
sequence we need 

Hi(S'S - LR2 - LR1) 

Hi(S'S - LRI - LR2) = Hi(S,a) 

+ H i - I (LR2) + Hi-2(S') 

-I- 2H l-l (S~ by T7 

= Z8, i= 3 

= Z, i=O 

= Z2, i = 2 

= Z3, i = 1 

= 0, i;:o!:O,1,2,3 

(pt. -+ RI 

! has~ = ZA(p)B(Q) where 
P •• 

LR1) 

A(P) = 1, 
= 4, 
= 0, 

(TB2 -+R2 

p = 0, 1 
p=2 
p;:o!: 0, 1,2 

B(q) = 1, q = ° 
= 0, q;:o!: 0. (77) 

! has~ = ZA(p)B(Q) where 
P •• 

LR2 - SM) 

A(P) = 2, p = 0, 1 
= 4, p = 2 
= 0, p;:o!: 0, 1,2 

(S2 -+ 4 - SN - Rl - R2 

B(q) = 1, 
= 0, 

q = 0,3 
q ;:o!: 0,3. 

(78) 

! has E2 = ZA(P)B(.) 
P •• 

S,a - LRI - LR2) 
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where 

A(P) = 1, P = 0 
= 3, p = 1 

= 2, p = 2 
= 8, p = 3 
= 0, p ~ 0, 1,2,3 

B(q) = 1, q = 0,2 
= 0, q ~ 0,2. 

(79) 

Finally then, a portion of the Mayer-Vietoris se­
quence is 

Z2 --+ Z8 --+ H 5 (1. - SN) --+ Z2 --+ Z' 

H 5 (1. - SN) = ZIO 

thenP = Z9. 

6(b) Q = Hs(2 (\ 3 (\ 5 (\ St2) 

2 n 3 n 5 (\ St2 = {E: x~ = 1 

E~ Y~ = 1 

{XIYl + aX2Y2 + (3X3Y3 = 1 
1 ~ a 2 ~ (32 ~ 1 

H;(2 n 3 n 5 (\ St2 ) = H l o-i(2 n 3 n 5 Vex>, 4 Vex» 

H\2 n 3 n 5 Vex>, ex» --+ H\1. Vex>, ex» --+ H\2 (\ 3 n 5 Vex>, 4- Vex» 

" o 
--+ H\2 (\ 3 n 5 Vex>, ex» --+. 

" Z 

Thus HS(2 (\ 3 n 5 Vex>, 4 Vex» = Z + H4(1. V CD, ex». 

Looking at the singular points of the fibration 

(a) none 

(b) 

contractible nonsingular fibre. 

(c) 

contractible singular fibre. 
SR2 is the union of the singular points over LR2 • For a description of LRI see Appendix r. 

LR2 = {Y2 = ±[ -(1 - (32)/(1 - ( 2)]iY3J 

LR2 looks like two S11S joined on a.n SO, 

{Y2 = Y3 = O} = SM. 

Define SN = SR2 V 'II"-\SM) , 

H 3(4 Vex>, ex» --+ H 3(SN Vex>, ex» --+ H\4- Vex>, SN Vex» --+ H4(4 Vex>, ex» 

" " o 0 

--+ H\SN V CD, CD). 

" Z2 

H4(4 V CD, CD) = H\1. Vex>, SN Vex». 

(80) 

(81) 

(82) 

(83) 

--+ H'(SN Vex>, 'II" -1(SM) V CD) --+ Hi(SN Vex>, ex» --+ Hi('II"-\SM) Vex>, CD) --+. (84) 
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Studying the first term 

H'(SNV 00 , 7r -1(SM) V (0) = H 2 _ i(SN - 7r -I (SM») 

Hi(SN - 7r-1(SM») = Z2, i = ° 
=Zs, i=1 

= 0, i ~ 0, 1. 

Studying the third term 

--+ Hi(7r -I (SM) V 00, SR2 n 7r -l(SM) V (0) 

--+ Hi(7r -I (SM) V 00, (0) 

--+ H i (SR2 n 7r -I (SM) V 00, (0) --+ (85) 

Hi(7r -1(SM) V 00, SR2 n 7r -I (SM) V (0) 

= H4- i (7r -1(SM) - SR2) 

H i(SR2 n 7r-\SM) V 00, (0) = Z2, i = ° 
= 0, i ~ 0. 

7r-1(SM) - SR2 is a fibre space 

(TB2 --+ 7r -I (SM) - SR2 

! with E2 = ZACJI)BCo) where 
]1.0 

SO) 

A(P) = 2, P = ° 
= 0, p ~ ° 

B(q) = 1, q = 0,3 
= 0, q ~ 0,3. 

We deduce 

(pt. --+ Rl 

H4(SN V 00, (0) = Z2 

Ha(SN V 00, (0) = 0. 

! has E!.o = ZAC]I)BCo) where 

LR1 ) 

A(P) = 1, p = ° B(q) = 1, q = ° 

(86) 

= 5, p = 1 = 0, q ~ 0. (87) 
= 0, p ~ 0, 1 

(TB2 --+R2 
! has E!.o = ZAC]I)BCo) where 

LR2 - SM) 

A(P) = 1, p = ° B(q) = 2, q = 0, 3 
= 3, p = 1 
= 0, p ~ 0, 1 

(8' --+ 4- - SN - Rl - R2 

! 
S,2 - LRI - LR2) 

hasE! •• = ZAC]I)BC.) where 

= 0, q ~ 0, 3. (88) 

A(P) = 1, P = ° B(q) = 1, q = 0,2 
q ~ 0,2. = 3, p = 1 

= 10, P = 2 
= 0, p ~ 0, 1,2 

= 0, 

(89) 

A portion of the relevant Mayer-Vietoris sequence 
is 

Z2 --+ ZIO --+ H i4- - SN) --+ 0. (90) 

Then, Q = Zll. 

Section 7 (R) 

R = H.(2 n 3 n 5 n 6 n St2) 

2 n 3 n 5 n 6 n St2 = {E~ x~ = 1 

E~ Y~ = 1 

{XIYl + (X.X2Y2 + {3xaYa = ° (91) 

1 ~ a2 ~ (32 ~ 1. 

This will be easy because 2 n 3 n 5 n 6 in its 
general position intersects 4- nonsingularly. 

Hi2 n 3 n 5 n 6 n St2) 

= Hi2 n 3 n 5 n 6 - 4) 

= H 4(2 n 3 n 5 n 6) 

+ Ha(2 n 3 n 4 n 5 n 6) by T6 

=J+L 
Then, R = Z12. 

DISCUSSION 

If the condition PI + P 2 + P a + p. = ° is im­
posed, no longer neglecting momentum conserva­
tion at vertex V, then when manifold 3 is fixed 
manifold 5 cannot be moved to infinity by varying 
the free parameters. Of necessity the rank of the 
homology group under this condition may not in­
crease over its value when the condition is not im­
posed. In addition we do not know how many of the 
possible functions predicted by this calculation are 
relevant to the Feynman integral. Both of these 
questions are related to the general problem of 
calculating the discontinuities around the singulari­
ties in terms of a geometric action on the homology 
group [the action of 7rl(T - L) on 

HS(W1 X W 2 - Vi i)]. I 

APPENDIX I 

L1 X~ + '" + x~ = ° - {origin} 

This manifold is homotopic to its section along 
E'i Ix.12 = 2 by moving points in a radial direction. 
Breaking Xi into real and imaginary parts Xi 

U, + Vi we get the equations 

Ef [(u~ - v~) + 2iu.v i ] = ° 
Ef (u~ + v~) = 2. 
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By adding and subtracting these two equations and 
taking real and imaginary parts we find 

""N 2 l' £..JI U, = , 2:~ v~ = 1; 2:~ UiV• = O. 

This is clearly the bundle of unit tangent vectors 
to SN-I. 

I.2 x:' + ... + X;N = 1, a. integers > 0 

We evidence a sequence of steps: 

(a) Keep real part of x;' fixed and let the imagi­
nary parts of x;' go to zero. All Xi are to be changed 
simultaneously to keep the sum of imaginary parts 
fixed at zero. This can be done by breaking Xi into 
two sets, in the first, imaginary part x;' ~ 0, in the 
second, imaginary part x;' ~ O. Move points in the 
two sets decreasing the absolute value of the imagi­
nary parts monotonically, moving only points with 
the largest lIm x;'1 in each set. 

(b) All the Xi now lie along lines with angles to the 
real axis k7r / ai; k an integer . Now push points on such 
lines toward the origin monotonically, maintaining 
2: x;' = 1 until all points on odd k lines are at the 
origin. This may be done continuously by sending 

Xi ~rxi 

Xi ~8Xi 

x. E even k lines 

x. E odd k lines 

rand 8 real, starting at r = 1 and 8 = 1 decreasing r 
and 8 monotonically, 8 to zero, at the same time to 
keep 2: x;' = 1. 

(c) Some reflection now shows that what we have 
left looks like {ad * {a2} * ... * {aN} where {ail 
indicates a set of ai points, and * indicates the 
topological join operation. This is the wedge of 
IT. (ai - l)SN-I,S. 

1.3 y~ + Y: + y~ + Y! = I} 
y~ + y: + a 2y: + fly! = 0 

Look at 

LBN = {2:~ x~ + y2 = 1 a2 real> 1. 
L:~ x~ + Z2 = a2 

By an argument as in 1.2 we can push away the 
imaginary parts of Xl, ••. , XN and z and make y 
either pure real or pure imaginary. Consider the 
two possible regions 

(a) 1 > y2 > 0 

(b) 0 > y2 > 1 - a2 

with boundary regions (y = ±1, z = ±a), 
(y = 0, z = ±(a2 

- l)i), (y = ±(l - a2)i, z = 0). 
In region (a), things look like SN-I U SN-l U 
SN-l U SN-l In region (b), things look the same. In 
boundary region one, like four points, in boundary 
region two, like SN-l U SN-t, in boundary region 
three like SN-l USN-I. Observing the situation we 
see 

HN(LBN) = Z4} = ZS if N = 1 

H1(LBN) = z 
Ho(LBN) = Z 

Hi(LBN) = 0, i ~ 0, 1, N. 

APPENDIX II 

11.1 H4(S4 U co, LR2 U co) ~ H4(S4 U co, co) 
is zero. 

Look at the homology dual H 4(S' U 0'), co) ~ 
H4(S4 U co, LR2 U co) The generator of 

HiS4 U co, co) = 7r4(S4 U 0'), co) 

{

Yi = Ui + i.vi' Ui and v. real 

E = u, = 0 ~ ~ 5 

Us = (1 + L:v~)i, Vs = O. 

We show 7r4(S4 U co, co) ~ 7r4(S4 U co, LR2 U 0') 

is zero by distorting E into LR2 • 

Pick a continuous unit vector field on S3, associat­
ing S3 with the direction of Vi, nevi)' Now map E 
into LR2 by 

U j = 0 } {>- 2: v~n(vi) 
Us = (1 + L: v~)l ~ [1 + (1 - >-2) L: v~]l 

Vi,VIi = 0 Vi, V5 = 0 

>- ranges continuously from zero to one. 

11.2 H8(S· X S4 - 4) -4 H8(S· X S4) is zero. 

Look at a cycle in H 8 (S4 X S4). It looks like a 
product of multiples of two spherical cycles. Can a 
cycle in H8(S4 X S' - 4) cover such a cycle? For a 
given Yi (S4 X S4 with coordinates Xi, Yi as in paper), 
7r-

1 (y.) has a spherical cycle if Yi is not on the singu­
lar surface Ys = -to However there is no spherical 
cycle on S4 that does avoid Ys = -t by ILL There­
fore f cannot map into a cycle of the given type. In 
the further case, H8(S4 X S4 n 2 U co, 4 n 2 U 0') 

~H8(S4 X S4 n 2 U 0'), co) for example, the 
analagous cycle can be covered as one can avoid the 
surfaces such as Y4 = C and construct a cycle of S3, 
provided Y4 = C is not one of the two singular 
surfaces tangent to S3. 
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Solution of the Killen-Pauli Equation* 
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We give the relevant solution to the integral equation which K1ill6n and Pauli have derived for 
elastic V9-scattering in the Lee model. As an application of this result the exact Tamm-Dancoff 
solution for the entire Vo-sector is obtained. This includes the amplitudes for Vo- and N29 elastic 
scattering and Vo-N29 production, as well as their extensions off the mass shell. 

I. INTRODUCTION 

T HE Lee model, an interesting model field theory, 
is generally called exactly soluble because one 

can obtain expressions in closed form for the re­
normalization constants and the amplitudes of the 
first sector. It would however be desirable to find 
the exact solutions also in the higher sectors, where 
more complicated processes are possible. This aim 
has been frustrated by the appearance of a singular­
integral equation which is not of the classical type, 
which has been found in both the off-shell methods 
that have been applied; namely, the Tamm-Dancoff 
method and the N quantum approximation. Disper­
sion theory and infinite-order perturbation theory 
calculations have yielded exact T-matrix elements 
in the second sector; however these calculations only 
give the mass-shell values of the amplitudes, and 
do not determine the Heisenberg fields. 

In Sec. II we give an exact statement of the 
problem and point out its difficulties. In Sec. III 
we obtain a solution of the integral equation in 
question. Using the Tamm-Dancoff method we then 
obtain the statevector relevant to V8-scattering in 
Sec. IV. The V8-amplitude is computed. We 
derive a new integral equation for the second state 
vector in this sector, solve it and obtain the N28-
elastic scattering amplitude. From the two state 
vectors together the V8 - N88 production ampli­
tude follows. 

ll. STATEMENT OF THE PROBLEM 

KaIlen and Pauli l in their famous paper on the 
Lee model2 have shown that the Tamm-Dancoff 

* Work supported in part by the U. S. Air Force under 
contract AFOSR 500-64 and by the National Science Founda.­
tion under contract NSF-FP-3221. 

1 G. Kiillen and W. Pauli, Kgl. Danske Videnshab. Selskab 
Mat. Fys. Medd. 30, No.7 (1955). This paper will be referred 
to as KP. 

3 T. D. Lee, Phys. Rev. 95, 1929 (1954). 

method leads in the V8-sector to the singular linear 
integral equation.3 

H(wo - W)1{tl(k, ko) 

= f(w)f(wo) _ few) f ,f(w') 1{tl (k' ,ko) . d3k'. (I) 
w w -Wo+W-ZE 

An equivalent to Eq. (I) has also been mentioned 
by Lee2 and again by Heisenberg.4 It further ap­
peared in related probleInB of more recent authors"& 
and also in our attempt to solve the Lee model 
by the N quantum approximation.7 

In Eq. (I) we have 

H(w) = wG(w) (1) 

and G(w) satisfies the once-subtracted dispersion 
relation 

G(w) = 1 + ~ 1'" ,Ir~ G(w') dw~. (2) 
11" II w (w - w - u) 

G(w) is known in principle since 1m G(w) is known 
function. In case of the Lee model we have 

(3) 

and we call few) the cutoff function. Its essential 
property is that it goes to zero fast enough for large 
values of the argument in order to make our integrals 
convergent. The cutoff function is assumed to be only 
a function of w = (k2 + jL2)t. 

Equation (2) shows that G(w) can be extended 
to an analytic function, regular in the complex w-

a Equation (62) in KP. Our function H(w) is identical 
with hew) of KP. We also put fCw) = g/(211")f(J(w)jC2w)t, 
where f is the cutoff function of KP and g the renormalized 
coupling constant. 

4 W. Heisenberg, Nucl. Phys. 4, 532 (1957). 
5 M. S. Maxon and R. B. Curtis, Bull. Am. Phys. Soc. 9, 

86 (1964) and M. S. Maxon, thesis, Indiana University (un­
published). 

6 H. Chew, Phys. Rev. 132, 2756 (1963). 
7 O. W. Greenberg, Bull. Am. Phys. Soc. 9, 448 (1964); 

A. Pagnamenta, ibid., p. 449. 
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-«I) ... -,. ,. 
(I) 

+«1) 

I.) 

FIG. 1. Showing 
right-hand cut (r) and 
left-hand cut (l) of our 
functions in w-plane. 
The integral just runs 
above (r). 

plane, cut along J.I. ::; w :s; + co. Again from (2) 
we derive 

G(O) = 1 

G(I co I) = 1 - .! fro 1m ~(w') dw' == Z. (4) 
7r ~ w 

If we assume Z, the wavefunction renormalization 
constant, to be positive (no ghost assumption), then 
a straightforward discussion 1 shows that G(w) has 
no zeros in the w-plane with this right-hand cut. 
Equivalent to (2) is the representation 

G(w) = Z + .! fro l~ G(w') d~' , (5) 
7r"w-w-u 

where now w = co is the point of subtraction. 
¥tl(k, ko) is an off-mass-shell extension of the 

elastic VS-scattering amplitude for an infinitely 
heavy V-particle. ko denotes the momentum of the 
incoming S-particle with mass J.I., k the momentum 
of the outgoing one. Equation (I) has to be solved 
under the boundary condition that 1/11 contains only 
outgoing waves. Therefore here and later a proper 
if has been added in the denominators. 

Amad08 in 1961 using the dispersion theoretic 
methods of Goldberger and Treiman9 succeeded in 
finding the T-matrix for elastic VS-scattering which 
we write in the somewhat different form 

T(w) = r(w) 1 + H(w)A(w) (6) 
H(w) 1 - H(w)A(w) . 

where 

1 fro ( 1) dw' 
A(w) =;;: ~ 1m H(w') H(w - w')· 

This T-matrix is the mass-shell limit of our function 
¥tl. The exact relation is 

(8) 

To get rid of uninteresting factors it is useful for 
the mathematical part of the discussion to put 

8 R. D. Amado, Phys. Rev. 122, 697 (1961). Our defini­
tion of the T-matrix differs from that of Ref. 8 in that we 
have not separated out the cutoff function. 

9 M. L. Goldberger and S. B. Treiman, Phys. Rev. 113, 
1663 (1959). 

then Eq. (I) becomes 

H(wo - w)¥t(k, ko) 

= -1 _ J ' r(w')1/I(k', ko) . d3k'. 
w w - Wo + w - ~f 

(10) 

The integral expression in (10) having a Cauchy 
kernel defines an analytic function in the complex 
w-plane, cut on the real axis from - co to Wo - J.I.. 

Therefore 1/11, through k a function of w, and in the 
integrand of w', has the same cut. The integral how­
ever runs from Wi = J.I. to w' = + co. So integral 
and cut do not coincide. (See Fig. 1.) This fact 
makes it impossible to succeed with the by now 
classical techniques of Muskhelisvili10 and Onmes.ll 
The particular difficulty is that in contradistinction 
to the classical problemsl2

•
13 here the related Hilbert 

problem leads to a functional equation which con­
nects the function at one point to its discontinuity 
at a different point. 

ill. THE SOLUTION 

One obvious solution of Eq. (I) can be verified 
immediately: 

slllce 

However this particular solution is not of great 
interest. It would lead to a trivial state vector and 
violate our boundary condition. 

To get to the solution of our problem we first 
observe that Eqs. (I) or (10) are linear integral 
equations of the third kind. We are only allowed 
to divide by the factor H(wo - w) if we take proper 
care of its zeros. Since we have excluded the ghost 
the only such zero is a simple one at w = Wo and 
we may write14 

The coefficient a has to be determined from the 
boundary conditions. 1/1~ satisfies 

_ J r(~/). I ¥t~(k/, ko) . d3k'. 
Wo - w + ~f W - Wo + w - U 

----
10 N. J. Muskhelisvili, Singular Integral Equations (P. 

Nordhoff Ltd., Groningen, The Netherlands, 1953). 
11 R. Omnes, Nuovo Cimento 8, 316 (1958). 
12 R. Blankenbecler and S. Gartenhaus, Phys. Rev. 116, 

1297 (1957). 
13 P. G. Federbusch, M. L. Goldberger, and S. B. Treiman, 

Phys. Rev. 120, 1926(1960). 
14 For S-waves, relation (71) may be used. 
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Put Vt~ = (1 + a)Vt2' (1 + a) ~ 0, then 

G(wo - w)Vt2(k, ko) 

= -1 _ J f2(W') Vt2(k' , ko) d3k' 
w (wo - w' + ie)(w' - Wo + w - ie) 

(12) 

As a working hypothesis, we may assume that there 
exists a solution 

Vt2 = <p(w, wo) 

of the above equation that only depends on the 
w's. In this case we can do the angular integrals 
in (12) and get 

-1 
w 

+ ! 1'" ,1m H(w'). , <p(w', wo) dw' .. (13) 
7r ,. w - Wo - te w - Wo + w - tE 

Equation (13) shows that <p(w, wo) is a meromorphic 
function in the w-plane with some cuts. Here Wo 
plays the role of a parameter and can be considered 
as a constant for the process of solution. 

We actually solve this equation by constructing 
an ansa tz. To this end we first study the detailed 
pole-cut structure of <p(w, wo) in the w-plane, then 
determine the free constants in the ansatz by sub­
stituting it into the equation. 

The function H-l(w) has the following integral 
representation I 5 

1 1 1 1'" ( 1) dw' -- = - + - 1m --,-, . 
H(w) w 7r,. H(w) w - w - iE 

(14) 

This is verified solving the integral by contour 
integration. The infinite circle gives no contribution 
and the derivative H' (0) = 1, which follows from 
(1, 2). Multiplying (14) by w we get 

_1_ = 1 + ~ 1'" (1m _1_) dw' 
G(w) 7r,. H(w') w' - w - iE 

(15) 

and substituting w --> Wo - w in (15) 

1 =l+wo-w 
G(wo - w) 7r 

1'" ( 1) dw' X Im--,-, .. 
,. H(w) w - Wo + w - te 

(16) 

This last function has a left-hand cut which only 
enters the physical range of w if Wo > 2p.. While 
G(w) is dimensionless H(w) has the dimension of 
an energy. A partial fraction decomposition of the 
two pole terms in the integrand of (13) gives 

16 M. Levy, Nuovo Cimento 13, 115 (1959). 

1 
(w' - Wo - ie)(w' - Wo + w - ie) 

= ~ [w' - ~o - iE - W' - Wo ~ w - iJ· (17) 

At w = 0 the square bracket also vanishes, but 
since we are interested in obtaining an equation for 
a function with as simple an w-dependence as possible 
we now extract an over-all factor w-

1
• We put 

and find for <PI the integral equation 

G(wo - W)<Pl(W, wo) 

= 1 + ! J'" 1m G(w') -I. (' ) d ' , . '1'1 W ,Wo W 
7r ,. W - Wo - '/,E 

1 J'" 1m G(w') (') d ' - - , + . <PI W ,Wo w. 
7r,. W -Wo W-1,E 

(18) 

Multiplying with G-I(wo - w) and using (15) we find 

<p(w, wo) 

= 1 + Wo ~ w {' (1m H(~'») -w~' -_-w-odw=+=-'-w-_-t-·E 

+ ! 1'" 1m G(w'). <Pl(W', wo) dw' 
7r ,. W' - Wo - tE 

- ! f'" 1m G(w') -I. (' ) dw' , + . '1'1 W ,Wo 
7r ,. W - Wo w - tE 

+wo-w 1--1'" ( 1) dw" 
7r ,. m H(w') w" - Wo + w - iE 

X ! 1'" 1m G(w') (' ) dw' , . CPI W ,Wo 
7r ,. W - Wo - tE 

Wo - w J'" ( 1) dw" - --- 1m --,-, " . 
7r ,. H(w ) w - Wo + w - tE 

X l 1'" 1m G(w') (') d ' - , + . <PI W , Wo w. 
7r,. W -Wo W-tE 

(19) 

Due to the cutoff function all our integrals are uni­
formly convergent and we may in the following 
interchange orders of integration. For the last line 
we may write 

_ Wo - w f'" (1m 1" ) dw" ! 
7r,. H(w ) 7r 

X f'" 1m G(W')<Pl(W', wo) dw' 
,. (w" - Wo + w - ie)(w' - Wo + w~ - iE) . 

(20) 
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Next we decompose 

1 
(W' - Wo + w - ie)(w" - Wo + w - i~) 

1 [ 1 = I II .. II . 
W -w +1,E W -Wo+W-1,E 

1 ] - I • 
W -WO+W-iE 

(21) 

Since for w' = wlI the square bracket also vanishes, 
there is actually no singularity in the entire expres­
sion and we may select this zero as we wish in order 
to make the single integrals well defined. We did 
add +i~, since then the following calculation be­
comes shortest. 

To get the left-hand cut in w explicitly we re­
arrange (20): 

Wo - W fa> ( 1) iU" " --- 1m --,-, " . 
'If' " H(w ) w - Wo + w - 1,e 

X 1 fa> 1m G(w' ) (I ) -' .. 1 - , " + . <Pl\W ,Wo uw 
'If' " W - W ~~ 

_ Wo - W fa> 1m G(w') A. (' ) -' .. 1 
I + ''I'IW,WOaw 

'If' "w - Wo W - ZE 

1 fa> ( 1) iU,," X - 1m H{ ")" , .• 
'If' " \W W - W - 1,E 

The very last integral can be done, using (14). Since 

1 1 Wo-W 
I + . = I + '(' + . ) W - Wo W - ~E W W W - Wo W - ~E 

the third integral in (19) can be written 

_.! fa> 1m G(w') A. (' ) -1 •. ' , + . '1'1 W ,Wo uw 'If'"W-Wo w-ZE 

_ -1 fa> 1m G(w' ) A. (' ) -1 .. 1 - , 'l'1\W ,Wo aw 
'If' I' W 

+ Wo - 00 fa> (I _1 ) iU,,' 
'If' " m H(w') 00' - 000 + 00 - iE 

X .! f'" 1m G(w") J. (" ) -1 .. " 
" • '1'1 00 ,wo uw 

'If' I' 00 -Wo-~E 

_ 000 - 00 f'" (1m _1 ) iU,,' 
'If' " H(w') 00' - 000 + 00 - if 

X .! fa> 1m G(w") A. (fl ) -' .. If " , + . '1'1\00 ,000 uw 
1f' p. 00 - W z€ 

_ 000 - 00 feo 1m G(w') <Pl(W', (00) d,w' 
'If' I' H(w') w' - 000 + 00 - ie 

+ 000 - 00 fa> 1m G(W')<Pl (00' ,wo) 'd I 
,( I + .) W. 

'If' "w \00 - 000 00 - ZE 
(22) 

The first two integrals can be combined, the fourth 
cancels against the eighth. Using 

1m [1/H(w')] = - 1m H(wl)/H(w')H*(w') 

in the seventh integrand, where H* is the complex 
conjugate of H, and ordering the terms after their 
w-dependence, we obtain 

<Pl(W, (00) 

_ 1 + 000 fa> 1m G(w' ) A. (' ) -' .. 1 
- '( I • ) '1'1 00 , 000 aw 

'If' "wW-Wo-U 

(23) 

where 

X(w' , (00) = 1 + G*(W')<PI(W' , wo) 

+ ! fa> 1m G(w") A. (/I ) -' .. If 
II • 'l'IW ,000 uw 

1f' I' 00 -Wo-'lE 

_ .! fa> 1m G(w") A. (" ) -1 •. If 
II I + . '1'1 00 ,000 uw • 

7r"W -00 ~E 
(24) 

_ Wo - W fa> 1m G(W')q,l(W', (00) -' .. , Put '( , + .) uw • 'If' ,,0000-000 W-1,E 

Now we collect all the terms 

J. ( ) 1 + 1 fa> 1m G(w') (' ) -1 . .1 
'1'1\00,000, = -, . <PI W ,Wo aw 

'If' I' W -Wo-~E 

_ ! fa> 1m G(w') ( , ) -1 .. , 
, /PI W ,Wo aw 

'If'" 00 

+ 000 - 00 fa> (r _1 ) iU,,' 
'If' " m H(w') 00' - 000 + 00 - if 

_ 000 - 00 fa> 1m G(W' )q,l (w' , (00) iU,,' 
'If' ,,00' (00' - 000 + 00 - ie) 

01(WO) = 1 + 000 f'" I~ q(WI)q,I(W' , ~o) iU,,' 
'If' " 00 (00 - 000 - ~E) 

(25) 

and observe that <PI has the form 

<Pl(W, Wo) = Ot(wo) 

+ 000 - 00 fa> (1m ---1,) , X(w', wo) iU,,' .' (26) 
'If' ,. H(w) w - 000 + w - ~E 

0 1(000) is a constant in w. Substituting (23) and the 
complex conjugate of (2) for G*<Pl in (24) one can 
see that the apparent right-hand cut of X(w', (00) 

cancels; therefore X(w', (00) is a dimensionless an-
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alytic function of w' having only the left-hand cut 
of tPI(W', wo). To find X(w', wo) we have to guess. 
There appeared only two dimensionless functions 
with left-hand cut in our calculation namely 
G(wo - w') and G-I(wo - w'). We try 

X(w', wo) = C2(wo)G- 1(wo - w'). (27) 

Substituting this in (26) we have 

tMw, wo) = C1(wo) 

+ C2(wo) Wo ~ w lO> (1m H(~'») 
dw' 

X (28) 
G(wo - w')(w' - Wo + w - ie) 

and this ansatz is consistent if we can find CI and 
C2 independent of w' and w such that it fulfills (18). 

It is convenient to introduce 

-1 f'" ( 1) Io(w) = -;- p 1m H(w') 

dw' 
X (29) 

G(wo - w')(w' - w - iE) 

and to observe that Io(wo) = A(wo) of Eq. (7). 
Our ansatz (28) becomes 

tPI(W, wo) = C1(wo) - C2 (wo)(wo - w)Io(wo - w). (30) 

There are several ways to find Oland O2• We find 
it most convenient to insert (30) directly into the 
integral equation (18) for tPi' Using (5) for G(w) 
this gives 

C1G(wo - w) - 02H(WO - w)IoCwo - w) 

= 1 + CIG(wo) - OlG(WO - w) 

+ 02W[G(WO - w)Io(w) + H-l(W) - w -1]. (31) 

The square bracket comes from the fact that, 
successively, 

1 fa> [1 J == =- 1m G(w'), . 
11" p W -Wo-1.E 

-, ~ . ](wo - w')Io(w - w') dw' w -Wo w-1.e 

- ~ f'" 1m G(w' ) I ( ') dw' 
- I • oWo - W 

11" II W -Wo+W-1.E 

= w[G(wo - w)Io(w) + H-I(W) - w- 1
], (32) 

which we show in Appendix 1. In (31) we divide 
by G(wo - w) and get 

201 - (wo - w)02Io(wo - w) 

= [1 + OIG(WO)]/G(wo - w) + -CdG(wo - w) 

+ wC2[Io(w) + {l/H(w)G(wo - w)}]. (33) 

We further prove in Appendix I 

w{Io(w) + [H(w)G(wo - w)r l
} = G(WO)-l 

+ woA(wo) - (wo - w)Io(wo - w). (34) 

Using this, the terms in Io(wo - w) cancel and when 
we multiply by G(wo)G(w'J - w), (33) becomes 

[201G(wo) - C2 - 02H(wo)A(wo)]G(wo - w) 

= G(wo)[l + OlG(WO) - C2]. (35) 

This equation can only hold identically in w if each 
side separately is zero. Therefore we obtain for 01 

and C 2 the system 

20IG(wo) - fJ2(1 + H(wo)A(wo» = 0 

-C1G(wo) + C2 = 1. 

We solve it to find 

1 1 + H(wo)A(wo) 
C1(wo) = G(wo) 1 - H(wo)A(wo) , 

02(WO) = 2/[1 - H(wo)A(wo)], 
(36) 

both independent of w. This shows that our ansatz 
is consistent and verifies the assumption that there 
exists a solution tP(w, wo) which does not depend 
on the vectors. We get 

-1[11+HoAo 
tP(w, wo) = ---;;; Go 1 - HoAo 

2(wo - w) I ( )] 
- 1 - HoAo 0 Wo - w , 

where Ho = H(wo) and Ao = A(WO).16 

(37) 

We could still add to tP as the solution of Eq. (15) 
any amount of a solution tPo of the corresponding 
homogeneous equation.17 

G(wo - w)tPo(w, wo) 

= ! 10> ,1m H(w'). I tPo(w', wo) dw' .' (38) 
11" II w -Wo-1.EW -Wo+W-1.E 

We have not been able to find any nontrivial solution 
of this equation. If we remark that 1m H (w') is 
proportional to g2, the coupling constant, we realize 

16 After this work was completed7 we were informed that 
R. P. Kenschaft and R. D. Amado also have found a particu­
lar solution of Eq. (13). R. P. Kenschaft and R. D. Amado, 
J. Math. Phys. 5, 1340 (1964). Their result agrees with our 
solution (37). I want to thank them for sending me a preprint 
prior to publication. 

17 Having found the two clearly linearly independent solu­
tions (11) and, with some factors, (37) of Eq. (I) we can 
construct a solution of its homogeneous equatIOn. This has 
taken care of by the factor 0:. After dividing out H(wo - w) 
one could still add any amount of a solution of the new 
homogeneous equation (38). 
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that this homogeneous equation cannot have any 
solution which for smaUl has a power-series expan­
sion in l, such as, for instance, our solution of the 
inhomogeneous equation. Also for Wo large and neg­
ative, the term with the integral of Eq. (18) can 
be made arbitrarily small. The equation can then, 
in principle, be solved by a convergent process of 
iteration. In this case it has again our unique 
solution. 

This does not exclude the existence of homoge­
neous solutions for particular values of land woo 
Here we assume the T-matrix to be an analytic 
function in l around g2 = O. We expect little scat­
tering for small l. Then, for small enough l, the 
homogeneous equation has no selution and the most 
general solution of the KP-equation (I) is given by 

Ifl (k, ko) = [(1 + a)f(w)f(wo)/(wo - w + if)] 
X cp(w, wo) + a8(k - ko) 

with the cp of Eq. (37). 

IV. THE Va-SECTOR 

(39) 

Having solved Eq. (I) we can, as the natural 
application of result and method, give the exact 
Tamm-Dancoff solution for the entire V8-sector in 
the Lee model. The V8-elastic scattering amplitude 
is obtained by imposing the proper boundary con­
ditions in (39). For the N28 elastic amplitude we 
derive a new integral equation which can be solved 
with the knowledge gained in Sec. III. Knowing 
the two relevant state vectors the production am­
plitude follows as a byproduct. 

Again proceeding from KP, to which we refer for 
notation and details, we write the Lee model Hamil­
tonian in renormalized form 

5) = 5)~ + 5): 

5)~ = Zm VtV + mNtN + J w(k)a \k)a(k) d3k (40) 

The wavefunction renormalization constant Z has 
been given in (4). KP further find, written in our 
notation, 

Z am = - J f2~,,:') d3k' = - J.w 1m G(w') dw'. (41) 

We use 

[ak, a~.l = a(k - k') (43) 

all other (anti) commutators being trivial. We con­
struct the bare Tamm-Dancoff states by 

IN) = Nt 10), 

lak) = a~ 10); 

but 

I V) = ZIV
t 10) 

and 

(45) 

so they are all normalized to one, or a a-function 
in the continuum. We take kl ~ k 2 • 

For the scattering of a V-particle on a 8-particle 
we want an eigenstate of the total Hamiltonian of 
the form 

(46) 

with 

(47) 

IV) denotes the stationary eigenstate of the total 
Hamiltonian describing a physical V-particle of mass 
m. In terms of Tamm-Dancoff states, it is 

and Ixr -the scattering part-can be written 

+ J 1f2Ck', k"; ko) IN8k .8k ··) d3k' d
3
k" (49) 

with outgoing waves only in Ifl and 1f2' Using the 
successive relations 

5)a~. IV) = a~.5) IV) + [5), a~.] IV) 

= ma~. IV) + (woa~ + f(wo) VtN) IV) 

= (m + wo)a~. IV) 

- fCw?l J fCw,') 1V8k ·) d3k', 
v'Z w 

the Schrodinger eigenvalue equation gives 

Z(wo - w + am)lfl(k, ko) 

= f(wo~(w) + 2 J f(w')lf2(k', k; ko) d3k' 

(50) 

(51) 

(42) (wo - WI - w2)lf2(k1 , k2; ko) 

and 
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From the last equation together with our boundary 
condition (49) 

,p2(k1, k2; ko) = [2 (wo - WI - W2 + iE)r l 

(52) 

and substituting this into the first equation of (51) 
we find 

[ f r(w') d
3
k' ] Z(wo - w) + Z~m + , + . ,pI(k, ko) 

w - Wo W - ~E 

Using (41) and 

f f2(,) aSk' 
H(w) = Zw + Z ~m + , w ., 

w - w - ~E 
(54) 

which is easily checked and is already implicit in 
KP, one obtains for ,pI the integral equation (I). 

The most general solution of it (under the re­
strictions mentioned) has been given in (39). If we 
insert this and the relevant parts of (48), (49) in (46) 
we obtain 

I(V8k ./
D

) = Zt(!V8k .) + a !V8k .» + .... 
This shows that any a ~ 0 would change the 
normalization of the plane wave contribution to the 
state. Therefore our boundary condition implies 
a = 0 and the relevant solution of the KP-equa­
tion (I) is 

( ) 
f(w)l(wo) 

,pI w, Wo = w(I - HoAo) 

X [ 
1 1 + HoAo )] 

. G() + 210(wo - w w - Wo - ~E Wo 
(I') 

or, somewhat handier, 

with CI and C2 given in (36). 
Using this in (52) we find for ,p2 

,p (w w· w) = l(wo)l(wl)I(W2) 
2 I, 2, 0 v'2 (wo - WI - W2 + iE) 

where we have indicated that ,p2 as ,pI depends on 
the energies only. 

The state vector corresponding to an incoming 
V and 8-particle can now be written down and from 

it the V8-scattering matrix can be computed. We 
use the definitions 

Sve = «V8k yut I (V8S n
) 

= ~(k - k l ) + 27ri ~(w - wI)T(w). 

(56a) 

(56b) 

To compute the S-matrix by use of (56a) and explicit 
substitution of (I') and (55) is possible but extremely 
lengthy. Therefore we give a different derivation for 
T(w) in Appendix II. Similar to the N8-sector 
(where there is no renormalization) one finds that 
the T-matrix is given by the residue of 1/11 in (I') 
at the pole for w = wo0 This fact we have expressed 
in relation (8). Applying this to (I') we see that on 
the energy shell the second term, which carries the 
left-hand cut, drops out. Due to the a-function in 
(56b) the residue of the first term reduces to expres­
sion (6) in agreement with Amado's result. 

To discuss N28 scattering we have to find the 
eigenstate of the Hamiltonian of the form 

I(N818 2/
D

) = IN81 82 ) 

+ f (PICk'; k lk 2)ZI I V8 k ,) d3k' 

+ f 1/>2(k', k"; kl' k2) IN 8 k , 8 k ,,) d3k' d3k", (57) 

with eigenvalue m + WI + W2 and outgoing waves 
only in 1/>1 and 1/>2. The Schrodinger equation leads 
to the system (ws = WI + (2): 

Z(ws - w + ~m)I/>I(k; kl' k2) 

= H(wI)~(k - k l) + H(w2)~(k - k2) 

+ 2 f 1/>2(k,k';kl ,k2)f(w') a3k', 

(ws - w' - W")1/>2(k', kIf j kl' k2) 

= !f(W")1/>1 (k' ; kl' k2) 

+ H(w')I/>I(k" j kl' k2). (58) 

Solving the second equation and substituting into 
the first one, using (54) we find this time for 1/>1 the 
singular integral equation 

H(w3 - w)l/>l(kj kl' k2) 

= H(wI) ~(k - k2) + H(w2) ~(k - k l ) 

- l(w) f ~(w')I/>I(k'jkll k2~ d3k'. (59) 
w -W3+W-U 

It is convenient to make the substitution 

I/>I(kj kl' k2) = !H- I(w3 - w) 

X [1(WI) ~(k - k2) + l(w2) ~(k - k l )] 

- [1(w)l(wI)I(w2)/2 H(wI)H(w2)]x(kj kl' k2). (60) 
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Then (59) becomes 

H(wa - w)x(k; kl' k2) = HI. + H2 . 
W - W2 - te W - WI - te 

This integral equation has a certain similarity to 
Eq. (I) or better, Eq. (10). Their homogeneous equa­
tions are the same. Also we may discard immediately 
the 5-function solution recalling the above boundary 
condition. The inhomogeneous term introduces a 
somewhat more complicated analytic structure than 
we had in (I). But using the technique of Sec. III 
and the relations in the Appendix, this is the justifica­
tion for having been so explicit there, we can still 
find the solution. 18 

A detailed study of the analytic structure of X 

leads us to the ansatz 

x(w; WI, (2) = 1 + . [ WI • 
Wa - W te W - W2 - te 

where Ia(w) = Io(w) for Wo = Wa in (29). Band C 
are constant in w. They have to be determined such 
that (61) satisfies (60). Substitution in (60) and 
doing the integrals, where one again will use the 
relations in the Appendix, we see that the ansatz 
works if 

(62) 

and 

C = -2H(wa)/[1 - H(wa)A(wa)]. 

Therefore [Ha = H(wa), Aa = A(wa)] 

+ Wa 2HaAa] _ 2H a la(wa - w). (II') 
W 1 - HaAa W 1 - HaAa 

Using this and (60) in the second equation of (58), 
we find 

tPik', k"; kl' k 2) 

_ ! [ f(Wl)f(w") 5(k' - k2) + f(Wl)f(w' ) 5(k" - k2) 
- 2 (WI - W" + ie)H(wl) (WI - W' + ie)H(wl) 

18 The equations in the higher sectors of the Lee model 
again have the form of (I) and (II). The author believes that 
they too can be solved along these lines. However the inho­
mogeneous terms become more and more complicated such 
that it requires a great amount of work to do all the integrals. 

+f(W2)f(w')5(k" - k 1) + f(W2)f(w")5(k' ~ k 1) ] 

(W2 - w' + ie)H(w2) (W2 - W" + ie)H(w2) 

f(Wl)f(W2)f(w')f(w") 

(63) 

With this we have obtained the relevant state 
vector. Call Jif2 the elastic N28 T-matrix element 
defined by 

SN29 = «N8", .8.,,,) out I (N8",8.,.)in) 

= ![5(k' - k l )5(k" - k2) + 5(k' - k2)5(k" - k l )] 

+ 2'll"'i5(WI + W2 - W' - w")Jif2(Wl' W2; w'). (64) 

We read Jif 2 off as the residue of the corresponding 
pole in tP2(k', kIf; kl' k2)' We have taken care of 
the identity of the bosons 8 1 and 8 2 in (45). This 
gives 

5(Wl + W2 - W' - w")M lWl' W2; w') 

and 

= 5(Wl + W2 - W' - w")M2(Wl, W2; w') 

- [5(k' - k2)5(w" - (2) 

+ 5(k" - k2)5(w' - wl)]r(w')/2H(Wl) 

- [5(k" - k1) 5(w' - (2) 

+ 5(k' - k 1)5(w" - (2)]f2(W2)/2H(w2) , 

M 2(Wl, W2; w') = [f(wl)f(W2)f(wf')(w")/2H1H2] 

X [x(w'; WI, (2) + x(w"; WI, (2)], 

where w" = Wa - w' = WI + W2 - W' is understood. 
Thus 

MI. ) _ f(Wl)f(W2)f(w)f(wa - w) 
2\Wl, W2, W - 2H(w

1
)H(W2) 

+ ~ 2Hana ) _ 2Ha 
Wa - W 1 - Hana 1 - Hana 

X (! Is(ws - w) + _1_ Is(w»)]. (65) 
W Wa - W 

The first two lines can be simply combined. The 
two expressions in the last line combine by use of 
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(34). Doing all the cancellations we find19 

Miwl' W2;W) 

. [ ( ) ( )J rC( 1)rCW2) = 1,11" 5 W - WI + 5 W - W2 H(Wl)H(W2) 

+ H(WI + (2) 
1 - H(wl + (2)A(wl + (2) 

X l(wl)l(w2)I(w)l(wl + W2 - w) 
H(Wl)H(W2)H(w)H(Wl + W2 - w) 

The production amplitude P, defined by 

Sprod = «N8102r t I (V80)in) 

= 27ri5(Wl + W2 - WO)P(Wl' wo) 

(66) 

(67) 

is given by the term containing the 5(Wl + W2 - wo) 
in 1/;2(Wl' W2, wo) of (55). Substituting W2 = Wo - WI 
we find 

P(Wl, wo) = (f(wl)l(wo)f(wo - wl)jv2 Wl(WO - WI + ie» 

X [2C1(wo) -CaCwo)(wo - WI) 

X 10(wo - WI) - C2(wo)wl1o(wl)J. (68) 

Again using (34) for the last term, the second term 
in the bracket cancels, and this simplifies enormously 
to read 

P(WI wo) = l(wl)l(wo)l(wo - WI). 1 . (69) 
, H(Wl)H(wo - WI) 1 - H(wo)A(wo) 

which again agrees with Amado's work. 
For completeness we may mention that the NO­

elastic amplitude, defined by 

SN9 = 5(k - k') + 27ri5(w - w')M1 Cw) 

of a Peierls pole20 in the Lee model; a question we 
think has not yet been answeredl9 convincingly. 

For Wo < p. (W3 < 2p.) a solution of the homoge­
neous equation (38) would clearly correspond to a 
stationary eigenstate of Sj, which would either be 
a bound state or a ghost. The denominator I - HoAo 
can vanish between 0 < w < p., where it is real, 
if l is large. This shows that in the Lee model a 
V8-bound state can occur. However such a state, 
having the V8-quantum numbers, will not change 
the expressions for the amplitudes in this sector, 
since due to energy conservation (stable V) it would 
not be accessible from either the V8 or N20 channel. 
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Note added in proof: Using a more deductive 
method, it has been possible to solve the homoge­
neous equation and to show uniqueness of the above 
solution. 

APPENDIX I 

To prove the relations (32) we write 

1 fa) [1 J = -=-- 1m G(w'), . 
11" )I W - Wo - te 

-, ~ . J(wo - w')lo(wo - w') dw', 
w - Wo w - tE 

in our notation becomes, 

Ml(w) = -t(W)H-l(W). 
make a common denominator and observe that the 

(70) factor (wo - w') is canceled. So 

Since we have only 8-wave scattering: 

5(k - k') = 5(w - w')/411"kw 

and we define 

SN9 = (411"kw)-15(w' - w)So(w) (71) 

where the reduced S-matrix So can now be written 

So(w) = exp [2i5(w)] = H*(w)/H(w) (72) 

in terms of its phase shift or our function H(w). 
It is remarkable that all three amplitudes of this 

sector [(6), (66), (69)] contain the NO-amplitude 
M(w) in a simple way. All three amplitudes further 
contain the denominator 1 - HoAo. It is therefore 
the study of this function (1 - HoAo) that will 
bring an answer to the question of possible existence 

11 The N2e amplitude has first been derived by P. K. 
Srirastava, Phys. Rev. 131, 461 (1963). We do not agree 
with the results in Appendix B of that paper [Eqs. (BlO), 
(BI4)]. 

J = ~ fa) 1m G(w' ) dw' I ( _ ') 
I + . oWo W. 1I")lW-WO w-u 

To get further we insert the definition (29) of 10 , 

J = -w fa) , 1m G(w' ) dw' . 
11" )I w -Wo+W-tE 

dw" 
X G( ")( " I wo-w w -wo+w 

Changing orders of integration, 

J = -; 1a) (1m H(:"») G(wa:-
' 
w") 

X ! fa) 1m G(w') dw' 
11" )I (w' - Wo + w - iE)(ci - Wo + J' 

----
20 R. F. Peierls, Phys. Rev. Letters 6, 641 (1961). 
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the last integral can be done to give 

" 1 . [G(wo - w) - G(wo - w")] 
w - w - t~ 

and then 

J = -~ G(wo - w) 
7r 

f '" ( 1) dw' 
X p 1m H(w') G(wo - w')(w' - w - i~) 

+ ~ f'" (1m _1) dw' . 
7r p H(w') w' - w - i~ 

Doing the last integral and using (29) again 

J = w[G(wo - w)Io(w) + [H(w)r l - w -I] 

The expression (34): 

QED. 

fil == w(Io(w) + [H(w)G(wo - w)fl} 

apparently has right- and left-hand cuts combined. 
The right-hand cut however does cancel out. To 
show this we use (29) and (14) to write 

J 1 = G-\wo - w) + ~ f'" (1m He
1 '») , dw' . 

7r p W W - W - t~ 

X [G(wo 1_ w) - G(wo ~ w')} 

Now 

1 1 1 f'" ( 1) 
G(wo - w) - G(wo - w') =;: p 1m H(w") 

[ 
Wo - W Wo - w' J" X" .-" , .dw w - Wo + w - t~ w - Wo + w - t~ 

and, making one common denominator in the 
brackets, 

=;; ~'" (1m H(~') 
w"(w' - w) dw" 

X (w" - Wo + w - i~)(vi' - Wo + vi - i~) 
If we insert this into the expression for J 1 we find 
for the integral alone 

w f'" ( 1) w" dw" 
- 1m H( ") " . 7r p W W - Wo + w - t~ 

X! f'" (Im-1-,), dw'" .. 
7r p H(w) w - Wo + w - t~ 

Doing the last integral this becomes 

w f'" ( 1) w ' dw ' - Im--,-, . 
7r. H(w) w - Wo + w - tt 

X [H(wo 1_ w') - Wo -~, + iJ 

and by (15) J 1 becomes 

w f'" ( 1) dw' J 1 = 1 + - 1m --,- -~, --:::.:::..---
7r p H(w) w - Wo + w - i~ 

X [wo - w + w', _ w; ] . 
w H(wo - w ) Wo - w + iE 

This expression obviously only has a left-hand cut 
in the w-plane. To get it into the form (34) we 
combine the first and the last term in the square 
brackets and use (1) in the middle term to write it 

wo(wo - w' - w) + w' 
w(wo - w' + i~) (wo - w' + i~)G(wo - w') . 

Then w times this can be written 

w' - Wo + w ww' 
Wo , . - ( , . )G( ') w - Wo - t~ w - Wo - t~ Wo - w 

this leaves for J 1 

w J'" ( 1) dw' J 1 = 1 + - 1m H( ')' . 
7r p W W - Wo - t~ 

w'dw' 
X G(wo - w')(w' - Wo - i~)(w' - Wo + w - i~) 

The first integral is G;l - 1. The last integrand 
we decompose 

ww' 
(w' - Wo - i~)(w' - Wo + w - i~) 

,[ 1 1 ] = w,. - I • , 
W - Wo - t~ w - Wo + w - t~ 

then 

J 1 = G;1 

-1 f'" ( 1) dw' + -;- p 1m G(w') G(wo - w')(w' - Wo - i~) 

1 f'" ( 1) dw' +;: p 1m G(w') G(wo - w')(w' - Wo + w - it) . 

The first integral (including the minus) is 

f '" ( 1) dw' 
woAo - p 1m H(w') G(wo - w')' 

The second integral is 

f '" ( 1) dw' 
- (wo - w)Io(wo - w) + " 1m H(w') GCwo - w') . 

These two relations are easily verified by doing 
partial fractions in (7) and (29). Adding up we find 

J 1 = G;1 + woAo - Cwo - w)Io(wo - w) 
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or 

J 1 = G;I[1 + HoAo - Cwo - w)GoIoCwo - w»), 

which is the form used in (34). 

APPENDIX n 
Here we give a simple derivation of the Tve­

matrix from the state vector. This derivation is 
interesting because the V8-sector is the first scat­
tering sector in which renormalization enters in a 
nontrivial way. It further provides an interesting 
integral relation between the T-matrix and its oft'­
shell extension. 

We start from the eigenvalue equation (47), 
insert (46), use the relations (50) and find formally 

\ r = -f(w)Z-!. J few:) \V8
k
,)d3k'. (11.1) 

X m+w-.p+'!.E w 

Since our theory is invariant under time reversal, 
the out state is just the Hermitan conjugate of the 
in state. Therefore from (11.1) one concludes that 

\(V8k)in) = \(V8sut) + 211"io(m + w - .p) 

X ~ J f~:) \ll8k ,) d3k' 

and from (56a) 

Sve = «V81r t 
\ (V8r t

) + 211"i ~ 

X J f~:) «V81r t
\ oem + w - .p) \V8k ,) d3k' 

. few) 
= o(k - k 1) + 211"'!.0(w - WI) viz 

X J f~') «V81t ut 
\ V8 k ,) d3k'. 

The last matrix element can be evaluated from our 
V8-state vector: 

«V81r t I V8 k ,) = ZtO(kl - k') + Z'!fl(k',k). 

Therefore, by (56b) 

T(w) = r(w) + few) J f("',') !fl(k'; k) d3k'. (II.2) 
w w 

The integral can be done. Using (I') and (3) it is 

fCW)2[Cl(W) ! 1'" ,rr~ G(w') dw~ 
11" # W (w - w - '!.E) 

+ C2Cw) ! 1'" 1m ~(w') I(w - w') dw'], 
11" I' w 

The first integral is w-1[G(w) - 1]. In the second 
we insert the definition (29) and change orders of 
integration, leading to 

-; i'" (1m H(~"») G(w d:' w") 

X 1 1'" 1m GCw') dw' 
:;;: # w' (w' - w + w" - iE)' 

Doing the last integral again 

1 J ( 1) dw' 
-:;;: 1m H(w') w - w' + iE 

1 J ( 1) dw' + :;;: 1m H(w') H(w - w') 

= [H- 1(w) - w -1] + A(w) 

where we have just inserted the definitions. 
Collecting, we find for T(w) 

T(w) = t(w)[! + 11 + H~ ! (G - 1) 
w G 1 - HHw 

+ 2 (L - ! + n)]. 
1 - HH H w 

This can be simplified to 

or 

T(w) = f2(W) 1 + H~ 
H(w) 1 - HH 

TCw) = [tCw)/w)C1(w) 

which is nothing other than the residue of !fl(I') 
at Wo = w. 

Similar derivations can be given for T N2e and 
Pve,Nee. 
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In this study we describe procedures for the numerical solution of the second-order linear differential 
equation which have either continuous or discontinuous coefficients. Our motivation is a well-known. 
technique in the theory of inhomogeneous transmission lines: the treatment of a continuously varying 
line by considering it to be comprised of various sections of uniform lines. Although this procedure is 
very suggestive physically, there are difficulties with its applications to second-order equations which 
do not describe wave propagation. First, the language of the circuit engineer is such that a pair of 
first-order equations describing some analogs of the complex quantities voltage and current seem to 
be required. Whereas these equations appear naturally in transmission line theory, we show that it is 
an unnecessary burden to find their counterparts when the problem is but to solve a second-order 
equation. The second objection to this approach is that it is not apparent that a piecewise constant 
partition of the coefficients in a differential equation will yield the rigorous solution if the subdivision 
is carried out to an arbitrary degree. Indeed, we show that the limit of the quantization scheme can 
not yield the rigorous solution. On the other hand, we are led to a well-defined technique which 
generates the solution by a method suggested by the procedures used in the discrete case. This enables 
the second-order equation to be solved rigorously by iteration with no complications, and in a form 
ideally suited for computer programs. 

I. INTRODUCTION 

A. Basic Equations 

T HE class of problems, mathematical and phys­
ical, which require an explicit knowledge of the 

solutions of the linear second-order differential equa­
tion 

property. From this initial condition and a knowl­
edge of Eq. (1), the behavior of the second-order 
U(t) should likewise be discernible in terms of the 
prior trajectory of its logarithmic derivative: the 
topic of the present analysis. 

d2 U(t)/dt2 + A (t)dU(t)/dt + B(t)U(t) = 0 (1) 

is legion. Only rarely can exact solutions of this 
equation be found in closed form. While local approx­
imations are easily constructed, the task of finding 
global representations offers a major problem. This 
difficulty is particularly vexing inasmuch as the 
first-order equation, 

dV/dt - P(t)V(t) = 0 (2) 

possesses an immediate integral 

Vet) = exp {r peT) dT} , (3) 

but no similar representation for Eq. (1) has been 
found. The solution (3) has the interpretation of 
defining the present value of Vet) in terms of the 
history of its logarithmic derivative pet) 
(d/dt)(ln V). If we specify an initial condition on 
the possible pair of solutions of (1) at say t = to, 
then Eq. (1) describes a unique function with that 

Following a change of unknown 

u(t) = U(t) exp H r A(T) dT} 

and an introduction of 

k2 (t) = B(t) - !dA(t)/dt- iA2(t), 

Eq. (1) can be recast into the canonical form 

d2u/dx2 + k\x)u(x) = 0 

(4) 

(5) 

(6) 

in which we replace t by x to eliminate confusion 
between the forms (1) and (6). At some point x = Xo, 

we may suppose that we have a given constraint 

d du 
dx In u = diu = go (x = Xo), (7) 

which singles out one solution; another linearly in­
dependent solution can be specified by choosing a 
different value for the parameter go. 

The form of the solution (3) to the first-order 
equation (2), suggests that it might be more profit­
able to concentrate our attention on 

* Contribution No. 1344 from the Division of Geological f% f% 
~o~:es, California Institute of Technology, Pasadena, Cali- z. r(~) d~ = In u(x) , u(x) = exp z. r(~)~, (8) 

966 
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that is, the logarithmic derivative 

rex) = du/dx , 
u 

(9) 

rather than on u(x). Indeed, from the point of view 
of a mathematical physicist interested in eigenvalue 
problems, an explicit knowledge of the logarithmic 
derivative provides more insight than would form­
ulas for two distinct solutions of (1), therefore we 
shall pay special attention to the logarithmic deriv­
ative. The continuity of r is assured if we restrict 
our attention to continuous solutions u(x) possessing 
a continuous first derivative u'(x). If these functions 
are bounded, then we note that the poles and zeros 
of rex) correspond to the zeros and maxima re­
spectively of u(x). In terms of rex), the equations 
(6) and (7) become 

dr/dx = _(k2 + r 2
), Xo ~ x ~ x.. (10) 

r = (Jo, x = Xo (11) 

wherein we have adopted the convention that the 
initial condition is given at x = Xo, and we wish 
to propagate the solution to the right of Xo up to 
some arbitrary point xm • Formula (10) describes rex) 
in terms of a Ricatti equation, and even though 
this expression is nonlinear, it can easily be solved 
by iterative techniques if k2(x) is negative. On the 
other hand, if k 2(x) is positive, then rex) behaves 
like an ill-tempered function with numerous sing­
ularities. Even high-speed computers have difficulty 
in coping with such a wildly fluctuating function, 
and numerical work under such circumstances offers 
major difficulties. One conclusion of the present work 
is the need to isolate and describe explicitly the 
bad manners of rex) so that if numerical methods 
must be used, they should treat slowly-varying 
functions. 

B. Summary of Results 

Equation (6) can be thought of as a reduced wave 
equation: subject to severe limitations on the be­
havior of k2 (x), approximate solutions can be found 
by the phase-integral1 method. This technique yields 
reasonably simple solutions of, say, exponential type. 
However, the character of the solution must change 
in the vicinity of a turning point of e(x): in such 
a region, the solution must be oscillatory rather than 
exponential which means that the phase integral 
needs severe correction. Loosely speaking, the major 

1 We prefer this adjective to any acronym based upon 
some perturbation of the initials of Liouville, Green, Carlini, 
Stokes, Horn, Rayleigh, Birkhoff, Jeffreys, Langer, Wentzel, 
Kramers, Brillouin, et al. 

disadvantage of the phase-integral method is that 
it involves an argument of the form JZ k(~) d~ in 
trigonometric or exponential functions. As a result, 
when k2 (x) changes sign, the argument does not 
change character correctly because of the integral's 
inertia in storing the past values of k(x). That is, 
the phase-integral solution must involve complex 
quantities in the presence of turning points even 
if the original differential equation's coefficients are 
real. We know that such equations have real solu­
tions, but the phase integral's hysteresis prevents 
its providing a valid representation of them. For 
this reason, we avoid using formulas which depend 
upon integrals of the form r k(~) d~. 

One means of avoiding turning-point difficulties 
is to consider k2

(x) as being piecewise constant 
k

2(x) = k~ over sufficiently small intervals Xi-l ~ 
x ~ Xi' Within each quantum cell a pair of trial 
solutions can be inserted: trigonometric or expo­
nential depending upon the sign of k~. By this 
process, the task becomes an algebraic one of de­
termining the correct coefficients of the trial function 
in each cell so that it joins smoothly with its neigh­
bors. The difficulties with this procedure are twofold. 
First, while the procedure appears to converge to 
a solution of the basis of physical arguments, the 
mathematical justification for this procedure has 
neither been simple nor convincing, since the limiting 
process involves a sequence of step-function approx­
imations. Second, for. fine-grained quantization, the 
large number of algebraic equations to be solved 
can be overwhelming. In diffraction theory, an ap­
proximate means of surmounting this hurdle is the 
heuristic device of neglecting certain contributions 
within each cell that can be identified with multiple 
reflections of a wave at a boundary which has a 
,:ery snu:ll reflection coefficient.2-4 Indeed, the phase 
mtegral 18 but the leading term in such an expan­
sion.

1 
In Sec. II, we consider this discretization 

process and show how the algebraic difficulties can 
be sidestepped by introducing the proper variables 
and format of the trial solution without making any 
assumption concerning the behavior of the field 
within each cell. This yields an expression for rex) 
in terms of a product of n 2 X 2 unimodular matrices 
for an nth-order quantization In the limit as n ~ co . ." 
each matrIX operator becomes an infinitesimal trans-

2 L. M. Brekhovskikh, Waves in Layered Media (Academic 
Press Inc., New York, 1960). 

I K. <? Budden,. The Wave-Guide Mode Theory of Wave 
Propogatwn, (PrentIce-Hall, Inc., Englewood Cliffs New 
Jersey, 1961). ' 

• J. R. 'Yait, Electromagnetic Waves in Stratified Media 
(The Macffilllan Company, New York, 1962). ' 

5 H. Bremmer, Comm. Pure Appl. Math. 4, 105 (1951). 
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formation; we analyze this differential change in r 
and find a geometric characterization of the tra­
jectory of the logarithmic derivative. We then find 
that the quantization scheme cannot yield the 
rigorous solution if the coefficients in the original 
differential equation are analytic. Nonetheless, the 
procedures suggest a transformation which enables 
the rigorous solution to be found by a related tech­
nique. This analysis will be found in Sec. III together 
with an illustrative numerical example. 

II. DISCRETE FORMALISM AND SOLUTION 

A. Introduction 

We assume that go and e(x) are real [but not k(x)] 
so that we can confine our attention to real solutions 
of (6). Of course, once the real solutions of (6) are 
known, complex solutions can easily be constructed 
by the superposition principle. 

Let {o; I m be any monotone sequence of (m + 1) 
points which divides any portion of the x axis, say, 
the interval 

- <Xl S Xo S x S :rm S + <Xl (12) 

into subintervals 

,o,Xi = 0, - Oi-l, (00 = xo) Oi+l > 0,) Om = xm ). (13) 

If this quantization is so fine that within the ith 
interval ,o,x, we can replace k2 (x) by k; to any pre­
assigned degree of accuracy, then the equation 

d2uJdx2 + k; Ui = 0, 8;-1 < x < 0; (14) 

has the general solution 

u, = A.[r.k~1 sin k/x - Oi-I) 

and so A; and r, can be identified as the amplitude 
and logarithmic derivative of the solution at the 
left endpoint. Most important however, is that the 
form of (15) is such that both the boundary condi­
tions (17) are decoupled, and it becomes possible 
to solve for A, and r i separately: a considerable 
reduction of computational effort. 

B. Solution 

The equations (6) and (7) are homogeneous, and 
so we can normalize Ao to any convenient value, 
but we must choose ro = go if the boundary condi­
tion (11) is to be satisfied. Even though k, is a jump 
function, this initial data can be continued as a 
smooth function for all x, provided we choose 

r - r i cos ki,o,x, - k; sin kJ>.x, ( 8) 
i+l - rik~1 sin ki,o,x. + cos k.,o,x. I 

and 

Ai+! = Ai[rik~1 sin k.,o,Xi + cos ki,o,XiJ. (19) 

In this manner we obtain a function which satisfies 
(6) everywhere except that k2 (x) must be replaced 
by some local average value k~. Furthermore, the 
iterations required to extend Ui(X) are very easily 
performed since (18) has the form of a Mobius 
transformation whose coefficient matrix 

Mi = [ cos ki,o,Xi 

k~1 sin k.,o,Xi 

- k. sin ki,o,Xi] 

cos k.Ax, 
(20) 

has its determinant equal to unity. As a result, 
the coefficient matrix T m required to transform r 0 

into some final value r m at the arbitrary point 
+ cos ki(x - 0.-1)], (15) x = Xm is the product of m factors 

wherein the discrete parameters A, and r i remain 
to be specified. From a theoretical point of view, 
any two-parameter combination of sin k,x and 
cos kix could serve as well as the particular form 
selected in Eq. (15). However, from a practical view­
point, major advantages are introduced by the selec­
tion (15). First, no assumption has been made 
concerning the character of Ui in the ith interval: 
oscillatory or damped. For, should k~ be negative, 
or k, = iK, be imaginary, then 

Ui = Air - r.K~1 sinh K.(X - ai-I) 

+ cosh Ki(X - Oi-l)] (16) 

will continue to be real provided only that A i and 
r i are chosen real. Note that at x = 0,-1 we have 

u, = Ai, du~dX = r" x = O,-It (17) 

·Mi · (21) 

and is likewise unimodular. 

C. Check 

It is now but a simple calculation to show that 
if m ---+ <Xl, and ,o,Xi ---+ 0 for any sequence {ad m, 
then the process yields a function which converges 
to the solution of an equation consistent with as­
sumed behavior of k2 (x). Since rex) defines u(x) 
uniquely apart from a multiplicative constant, it 
will be sufficient to show that the continuous limit 
of the r,'s defined (18) satisfies the Ricatti equation 
(10) on any interval Ax;. We calculate that 

-k. sin kiAx. - (r:lc;l) sin k.,o,x. 
AXi[(riki I) sin k;Axi + cos k,Axi ] , 

(22) 
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and if we pass to the limit .1Xi -+ 0 we obtain 

which is precisely Eq. (10). As a double check, we 
can repeat the limiting process for Eq. (19), 

A,[(r,k-;-') sin k,.1x; + cos k,.1Xi - 1] 
.1x. 

(24) 

and derive the d-efining equation for rex) in terms 
of u(x) 

1· A;+, - Ai du r( ) 1m = - = u X 
,h.~O .1Xi dx ' 

(25) 

if we note that in the limit, the amplitude Ai 
becomes U(Xi)' 

Since we have always assumed that dkldx = 0 
locally, what we have just shown is that to the extent 
that the derivative k' can be neglected on any quantum 
cell the scheme converges to a solution of (6). 

D. The Infinitesimal Transformation 

The preceding analysis furnishes a simple illustra­
tion of the algebraic structure of a particular Ricatti 
equation: one example of the general theory of such 
equations6 which shows that its solution can be char­
acterized by matrix operators. In the limit, each 
matrix Mi in the product (21) approaches an infini­
tesimal transformation, and the total transformation 
T m giving r(xm ) in terms of r(xo) can be expressed 
either as a matrizane or a product integrations: the 
finite result of compounding a sequence of infinites­
imal transformations. We can think of this operation 
as defining a curve traced out by the repeated 
reaction of the original point r(xo) to each infinites­
imal product Mi. If we can find some analytic means 
of specifying this trajectory, then we might be spared 
the need of calculating matrizants, or product 

. integrals to describe the limit of the iterative process. 
For this purpose, we consider the geometry of the 
transformation implied by any matrix Mi' 

No doubt some readers have been struck by the 
resemblance of M; to the transmission-line matrices 
of network theory. However, we caution that this 
resemblance is deceiving: Mi is a real transformation 
unlike the transmission-line matrix which is a complex 
one. In the context of transmission-line theory, volt-

6 R. Redheffer, J. Ratl. Mech. Anal. S, 835 (1956). 
7 R. A. Frazer, W. J. Duncan, and A. R. Collar, Ele­

mentary Matrices (Cambridge University Press, New York, 
1959). 

8 G. Birkhoff, J. Math & Physics, 16, 104 (1937). 

age and current, or E and H are out of phase, and 
the complex entries in the transmission-line matrix 
emphasize this feature. In our analysis however, we 
have avoided introducing any analogs of the first­
order transmission-line equations since we feel that 
their use is artificial and contrived for applications 
other than those described by Maxwell's equations. 
Furthermore, unlike the M/s, their geometric in­
terpretation requires a complicated hyperbolic model 
rather than the more familiar Euclidian plane. 

We emphasize that Eq. (20) represents a real 
transformation: in more general terms, it represents 
a mapping of the complex r plane upon itself such 
that the real axis is left invariant. Since Mobius 
transformations describe elementary geometric de­
formations of the complex plane, this provides us 
with a clue to the proper characterization of Mi' 
By direct multiplication, it is easily checked that 
each M; can be re-expressed as the product of three 
terms 

where 

Ri = [cos k • .1Xi 

sin k;.1x; 

-sin k.1X] , , 

cos k;.1x; 

(26a) 

(26b) 

(26c) 

Each factor has a simple geometric interpretation. 
The first, Ci represents a uniform contraction of 
the r'-plane by a factor l/k i ; on the other hand, 
its inverse C~' represents a uniform dilation by the 
inverse factor k i • Between these two operations, we 
need perform Ri which represents a rotation of the 
stereographic projection of the r'-plane on the 
Riemann sphere. 

The sequence of operations is illustrated in Fig. 1 
which only shows the plane intersecting the real 
r -axis and the north pole N of the Riemann sphere . 
First, we lay oft' the initial point r i on the r-axis 

N 

r 

r' 

FIG. 1. The geometry of the matrix transformation Mi. 
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which has been drawn obliquely for convenience. 
The r'-axis is drawn horizontally and intersects the 
r-axis at an angle.,y. = cos-1 (l/k.). If we project 
the r-axis onto the r'-axis, then all lengths on this 
new axis will be uniformly contracted. We continue 
by finding the sterographic projection of this image 
point, and then we rotate the Riemann sphere by 
a negative (clockwise) angle -0. = tan-1 (kiAXi) if 
kiAXi is positive. We retrace our steps to the original 
r-axis, and it is a simple matter to show that the 
aforementioned sequence is mimicked by the matrix 
product M, = C~IRiCi' The proof of this assertion 
is left to the reader, and is easily reproduced once 
it is recalled that the angle subtended by an arc 
on a circle from the center is twice the angle sub­
tended by that arc from the north pole. 

However, the geometric construction also shows 
that any transformation A r i, can be obtained by 
differentiating the function r i = ki tan (-kiX), 
that is 

If we recognize that this transformation must evolve 
continuously from some initial value r i gi at 
x = Xi, we thus find the general integral 

reX) = ki tan [k i (1'i - x)] (28) 

representing the locus of rex) on the ith interval 
where the constant 1'i is fixed by the initial condition 
at x = Xi' 

1'i = Xi - k~1 tan- 1 (g,fk.). (29) 

In the limit, as AXi -+ 0 it would seem that ki could 
be replaced by k(x) and gi by its initial value go 
since gi - gi-1 -+ O. In other words, we expect 
that the net transformation could be described as 

rex) = k(x) tan [(I' - x)k(x)] 

l' = Xo + [1/k(xo)] tan -1 [go/k(xo)], (30) 

where go is the initial value of r at X = Xo. However, 
the promise of this anticipation is broken for if we 
substitute (30) into the Ricatti equation we find. 

dr 
dx 

-w + r2) + (dk/dx)ltan [C'Y - x)k] 

+ k('Y - x) sec2 [C'Y - x)k]}. (31) 

In other words, (30) satisfies the Ricatti equation 
only to the extent that the first derivative of k(x) 
can be neglected. Where is the fallacy in the preced­
ing argument that can explain our disappointment, 
and perhaps lead us to a correction? 

The resolution of this conundrum depends upon 
a subtle point in the character of the analysis. The 
basic assumption was that a continuous e(x) could 
be approximated arbitrarily well by a staircase 
approximation. Whereas any such approximation is 
discontinuous, it does approach a continuous limit 
as the treads and risers get finer and finer. Of the 
eventual continuity, there is no doubt, but it is a 
peculiar type of continuity. Think for example of a 
staircase approximation to e(x) = x on the interval 
o ~ x ~ 1. Each riser represents the jump from one 
tread to the next, and the height of anyone riser 
goes to zero as the approximation gets better. How­
ever, no matter how fine an approXimation we care 
to make, the sum of all the risers, or the total jump 
will always be constant. In precise terminology, this 
is the difference between continuity and absolute 
continuity. The fallacy is now evident: while 1'. -
1'.-1 -+ 0, we can not conclude that 1'0 will be un­
changed as we pass through an unbounded number 
of quantum cells. That is, as we proceed from the 
ith cell to the (i + l)th one, we can not neglect 
the differential jump 1'Hl - 1'. at the end of the 
ith interval. In other words, we can think of Eq. (30) 
as a representation of the continuous or principal 
part of the transformation (21) which overlooks the 
denumerable collection of minute jumps. 

We can now see that the quantization scheme 
can not yield the rigorous solution even if carried 
out to the continuous limit, for the result of a 
staircase approximation to k2(x) can not be ab­
solutely continuous. From the differential equation 
(6) we see that the ratio u"/u must be equal to 
-k2 (x), hence in the limit, u" /u can not be ab­
solutely continuous no matter how smooth the 
original k2 (x) might have been. In general, we know 
that whenever k2 (x) is analytic, the differential equa­
tion (6) must have an analytic solution. As a result, 
for such equations the fact that the limiting 11," /u 
is not absolutely continuous contradicts the required 
analyticity of the solution. As a result, we conclude 
that the limit of the quantization process in general 
will not converge to the rigorous solution. That the 
limit of the iterative process might be a weak solu­
tion in terms of some norm remains an open question. 
On physical grounds, there can be no doubt that 
the discretization approach is a useful procedure 
when k2 (x) can be considered to be well approximated 
by a piecewise constant function. Perhaps if we 
retain information concerning the derivatives of 
k 2 (x), we can construct a rigorous solution? This 
question is answered affirmatively in the next 
section. 
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ID. THE CONTINUOUS TRANSFORMATION 

In the preceding paragraphs, we have discussed 
the hazards that obstruct an extension of the finite 
quantization theory to the continuous case. In such 
a situation, it is always well to pause, and reflect 
upon the possiblity that the infinitesimal case might 
better be handled by other methods. Basically, we 
are considering the second-order equation as an 
initial-value problem. That is, we wish some means 
of knowing the direction the solution or its log­
arithmic derivative will take once an initial value 
is specified. This question is of course immediately 
answered by the Ricatti equation (10) for it describes 
the derivative explicity in terms of the function. 
However, we know that when k 2(x) is positive, 
rex) behaves like the tangent function and has 
numerous poles and zeros. Any numerical method 
which attempts to pursue the path of such a spirited 
function will almost of necessity be doomed from 
the outset. On the other hand, the poles and zeros 
of the logarithmic derivative have no more signif­
icance than locating the maxima and zeros of the 
desired solution of the differential equation and 
should not present any intrinsic hurdle. 

In the previous section, we have introduced the 
notion of the principal part of the limit of the 
quantization process Eq. (30). In the initial stages 
of our investigation we had had the idea that by 
considering the constant 'Y to be in fact a slowly 
varying function of x, we could find the actual solu­
tion by solving for 'Y(x). This turned out to be a 
fruitful pursuit and in this fashion we were able 
to find excellent numerical replicas of the solutions 
to the differential equation without any trouble 
except in the neighborhood of a turning point. This 
difficulty had to do with choosing a trial function 
for the logarithmic derivative of the particular form 
(30); the problems vanish by choosing a simpler 
starting point. 

The essential ingredient is to find a slowly varying 
function which can characterize the solution. One 
possibility that we have just discussed is to use a 
component of the argument of the tangent function, 
that is, some element describing the phase. In quan­
tum mechanics, the scattering of a particle by a 
spherically symmetric potential can be described in 
terms of phase shifts. By introducing a nonlinear 
first-order ordinary differential equation, it is pos­
sible to find the relevant information without solving 
the second-order Schrodinger equation. This ap­
proach, introduced by Morse and Allis,9 and more 

o P. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933). 

recently discussed by Calogero1o and Levy and 
Keller,l1 is a powerful technique for finding the phase 
shift. However, these authors have been content 
with specialized information and have overlooked 
the possibilities inherent in this approach which can 
lead to solutions of the second-order differential 
equation. 

Consider the function <I>(x) defined by 

rex) = -ko tan [ko4>(x)], (32) 

where ko is some convenient, but arbitrary reference 
value, for example, the mean value of k2(x) over 
some interval. Note that even if rex) behaves 
wildly, the corresponding <I>(x) will reflect a much 
calmer character. Since rex) is specified once 4>(x) 
is known, we can ask what equation must 4>(x) obey 
if rex) is to be a solution of the Ricatti equation. 
The answer is found by straightforward substitution 
into (10), and after simplification we find that 4>(x) 
must satisfy 

d<I>/dx = [K(x) - 1] cos2 (ko<I» + 1, (33) 

where the function K(x) is 

K(x) = e(x)/k~. 

The simple formula (33) provides all the information 
necessary to specify a precise solution of the second­
order differential equation with virtually no com­
I,>lication for two important reasons. First, if k2(x) 
M bounded then the derivative 4>' is always bounded. 
Second, this formula only involves K(x) = k2(X)/k~ 
so that imaginary quantities will never be introduced 
if the original differential equation's coefficients are 
real. As a result, it is a trivial matter to solve equa­
tion (33) by an iterative process. That is, given 
4>0 = <I>(xo) at x = Xo, then 4>(x) is given by the 
expansion 

<I>(x) = <I>o + <I>~.1x + t%'(.1X)2 + '" 
+ ~! 4>~")(.1x)" + ... , (34) 

where the higher-order derivatives are easily cal­
culated from (33), 

<I>" = -ko<I>'(K - 1) sin (2ko<I» + K' cos2 (ko4» 

4>'" = _ko4>"(K - 1) sin (2ko<I» - 2ko<I>' 

X fK'sin (2ko<I» + ko(K - 1) 

X cos (2ko<I» 1 + Kif cos2 (ko<I» 

.... h.) t 
_'¥ __ =_e_,?' (35) 

:: F. Calogero, Nuovo Cimento, 27, 261 (1963). 
B. R. Levy and J. B. Keller, J. Math. Phys. 4, 54 (1963). 
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In other words we have a recurrance relation 
expressing the higher-order derivatives in terms of 
known lower-order ones. Once we are given <Po. it is 
no problem to determine what <PI = <p(xI) is at 
some nearby point Xl to any degree of accuracy 
by truncating the expansion (34). A repetition of the 
process allows one to calculate <P2 = <P(X2) and so on. 
No doubt some purists will argue that this is not 
a closed form representation of the solution. While 
this is true, it is in large part a meaningless objec­
tion. Any number of closed form expressions, e.g. 
contour integrals, are very elegant and concise but 
quite intractable when they are interrogated for 
numerical data. The important question to be 
answered is how readily can desired information be 
obtained. Before we can give any demonstrations 
of the utility of Eq. (33), we must digress and 
examine the intractability of a closed form solution, 
namely Eq. (3). 

We have implied that once the logarithmic deriva­
tive rex) is known, we could reconstruct the solution 
u(x) from the integral (3). While theoretically this 
formula should provide the desired answers, the 
practical situation is otherwise since the integral 
diverges at the poles of rex). If u'(x) is bounded, 
then any such infinity in rex) is just another way 
of saying that u(x) has a zero at that point, but 
nonetheless numerical integration of Eq. (3) to ob­
tain u(x) is to a great extent out of the question. 
In other words, even with an explicit rex) at our 
disposal, we may have all sorts of grief in translating 
this knowledge into numbers describing u(x) by use 
of (3)-so much for closed form expressions. 

The scheme we prefer to adopt neglects formula 
(3) and instead interpolates u(x) by a polynomial 
at each stage of the iterative process. At some Xi, 

suppose we know r i and an initial value Ui; at 
Xi+l > Xi we are given r i + l • These three pieces 
of information determine a unique second-order 
polynomial which must assume the value 

Ui+l = Ui 
2 + r,(X i + 1 - x,) (36) 

2 - ri+I(Xi+1 - x,) 

at X = Xi+l (the derivation of this formula is given 
in the Appendix). The ability of this rational func­
tion to predict the future value Ui+l in terms Ui, r i, 
and r i + l is rather remarkable. For example, with 
an increment Xi+l - Xi = 0.1, Eq. (36) reproduces 
sin x from its logarithmic derivative cot x to within 
four significant figures. In addition, Eq. (36) auto­
matically yields a zero of u(x) should rex) have a 
pole at a point where u(x) is regular, so that the 
role of the singularities of r is correctly reproduced. 

With these preliminaries, we can find numerical 
solutions of second-order differential equations to 
any desired degree of accuracy. The iterative scheme 
which carries the solution from one point to another 
is to truncate the Taylor expansion (34) to a poly­
nomial of suitable order for the increment chosen. 
A numerical example may serve to illustrate the 
procedure. The differential equation 

d2u/dx2 + (a2 - 6/x2) u = 0 (37) 

is distinguished by having a particularly simple pair 
of solutions 

U I = (3/ax) cos ax + [1 - (3/a2x2)] sin ax 

Uz = ~ cos (ax + ~) 
ax 2 

+ (1 - a2~2) sin (ax + ~). (38) 

Since (37) has a turning piont at X = 6!/a as well 
as a singularity at the origin it poses a rather 
severe computational challenge. We have used this 
equation as a test of our procedure for various 
choices of the parameter a. The larger this parameter, 
the more rapid are the oscillations of the solution 
for Ixl > 6~/a, and the more likely are errors to 
grow in any computational scheme. By use of a 
quadratic truncation of (35) we have found that 
the formulas (35) and (36) reproduce the solution 
very satisfactorily. As mentioned, the errors get 
worse with increasing a and Fig. 2, illustrates one 
of the poorer cases we have considered for which 
the parameter a had the value 3.5 and 61/a = 0.70. 
The increment chosen was Llx = 0.0142, a rather 
odd number which resulted from choosing an in­
crement inversely proportional to a and equal to 
0.1 if a = 0.5. At X = -10, the initial logarithmic 
derivative was adjusted to match U 2 , the solution 
with a singularity at the origin. From this initial 
value a solution was computed in the direction of 
increasing X using a quadratic formula for <p(x) to 
compute rex). This was followed by use of Eq. (36) 
to determine the solution. The calculation and the 
actual solution agree so well that it is not worth­
while to draw curves of each. Instead, the absolute 
error curve is drawn with a magnified scale. As 
might be expected in any initial-value calculation, 
the errors tend to grow as the computation pro­
gresses. However, except in the neighborhood of the 
singularity we note that the amplitude of the error 
increases but linearly, and furthermore it oscillates 
about zero. The divergence at the origin is more 
apparent than real since the percentage error remains 
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bounded. By choosing a smaller increment or adding 
an additional term to the expansion for <I>(x), the 
error can be reduced by an additional order of 
magnitude. We might add that the computations 
are sufficiently simple and proceed so fast that they 
can be performed with but the aid of a desk cal­
culator. Even on a relatively slow IBM 1410 com­
puter, the calculations were performed as fast as 
the machine could print out the answers. 

The preceding example illustrates the ease with 
which a second-order equation can be solved without 
any complications or need of any sophisticated 
numerical techniques. Of course, certain tricks of 
the trade can be very beneficial in reducing errors. 
For example we recommend use of a variable in­
crement which is smaller at the initial stages of the 
calculation to reduce a buildup of error. In addition 
the increment Xi+l - Xi should be scaled so that 
<I>i+1 - <Pi does not exceed some preassigned bound. 
In this fashion, a computer program can be both 
speeded up and made more reliable by using a 
floating increment whose size varies inversely with 
the size of the change in <I> (x) from Xi to Xi+1. 

Finally, we note that if the logarithmic derivative 
ru of Eq. (6) is known, then the logarithmic deriva­
tive ru of equation (1) which inspired the analysis 
is given by 

ru = ru - tA(x) (39) 

so that without any further ado, the solution of 
Eq. (1) can be found. 

As a last remark we should like to point out that 
the results of this section complement rather than 
supersede the discrete analysis of Sec. II for the 
case of a differential equation with analytic coeffi­
cients. For whereas this section is concerned with 
accurate representations which need a relatively fine 
interval for their calculation, the analysis in Sec. II 
yields good approximation for coarser intervals. 
While this may be of no matter when an equation 
is to be solved but once, the distinction becomes 
important when the differential equation must be 
solved many times for some set of perturbations 
in its coefficients. The formulas in Sec. II furnish 
a quick method of obtaining insight into the effect 
of a large number of variations and locating regions 
demanding further investigation. Following this ex­
ploration, the formulas of Sec. III can chart these 
unknown domains. To cite a nautical analogy: it is 
the difference between using dead reckoning and an 
inertial guidance system. One is cheap and often 
adequate, the other is more expensive but arbitrarily 
accurate. 

+.1 T T T T 

-.1.1 .L .L 

FIG. 2. The upper curve is the ~olution U2(X) of Eq. (37), 
and the lower curve IS the computatIOnal error of the numerical 
procedure described in the text. Note that there is a 10·1 
ratio between the two scales. . 
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APPENDIX 

In this Appendix we shall derive the formula (36) 
in Sec. III. From the equation (9) we have 

ur = uf
• (40) 

With no loss of generality suppose Xi O. Let us 
assume that the function u(x) can be approximated 
by some unknown quadratic expression which can 
be chosen in the completely general form 

u(x) = ax(x - .:1) + {3(x - .:1)(x + .:1) 

+ 'Yx(x + .:1), (41) 

where a, {3, 'Yare constants to be determined and 
.:1 is the length of the increment. 



                                                                                                                                    

974 J. KANE AND E. R. SURYNARAYAN 

Substituting (41) into (40) we find that 

[x2(a + (3 + 'Y) + x~( -a + 'Y) - {3~2]r 

= 2x(a + (3 + 'Y) + ~(-a + 'Y). (42) 

Let U+, Uo, u_ and r +, r o, r _ denote the values 
of U and r at the points x = ~, x = 0, x = -~, 
respectively. Then, from (42) we obtain 

The last two equations imply that 

or 

2a 

/3 
(44) 

U+ r + = (a + 2/3 + 3'Y)~ = 2'Y~2r +, 

(-a + 'Y)~ = -/3~2ro, 

-(3a + 2/3 + 'YM = 2~2ar_. 

(43) 
By similar reasoning more sophisticated formulas 
can be derived whose accuracy is of arbitrarily 
high order. 
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INTRODUCTION 

T HIS paper deals with an evaluation of the 
support of the Fourier transform of a function 

when, roughly speaking, the behavior of the function 
can be evaluated at infinity on the x axis and when 
a normalization condition is given. The functions 
we are concerned with will be either wavefunctions 
or scattering amplitudes. 

The properties we give are particularly wen 
adapted to the problem of evaluating cutoffs in 
momentum space in field theory, due to the follow­
ing feature of all the approximations used to calculate 
interactions in field theory: when one stops at a 

given order of approximation, the interactions be­
tween particles are always known when the particles 
are far apart and not well known for small distances. 
We give three examples. 

(1) In the case of nuclear forces due to the ex­
change of 11" mesons, the exchange of one meson gives 
the tail of the potential, and as the number of virtual 
mesons exchanged increases one gets nearer to the 
origin. After a calculation to a finite order of per­
turbation, the nuclear forces are known only for a 
large enough distance-between the nucleons. 

(2) In dispersion theory, in bootstrap calculations 
for instance, solving the coupled integral equations 
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by successive iterations amounts to introducing in 
a given channel "potentials,'" such as they can be 
defined in field theory, with shorter and shorter 
ranges; and one supposes that "the effect of short­
range forces can be imitated by a simple cutoff 
procedure." 2 

(3) In the problem of finding bound states of a 
fermion field interacting with itself via a Fermi inter­
action, calculating the creation operator of a bound 
boson at rest, expressed in the "one-pair approxima­
tion" in terms of the creation operators of the fermion 
and antifermion, we have 

A * = J {X(u)b*(u)d*( -u) + f..I(u)b(u)d( -u)} du, 

where A * is the creation operator of the bound boson 
at rest, b*(u), b(u) are the creation and annihilation 
operators of the fermion with momentum u, d*(u) 
and d(u) the creation and annihilation operators 
of the antifermion with momentum u. 

One obtains the eigenvalue equation for the mass 
w of the bound state in the form3 

(i) J (IX2(U)I + If..I2(U) I) d3u = 1, 

(ii) J (X(u) - f..I(u» d3u = 0, 

with 

x = 1/(2E .. - w), 

where m is the fermion's mass. 
Here X(u) can be interpreted as the "wavefunc­

tion" representing the probability for the presence 
of a pair b*(u)d*( -u) in the bound state A *. Thus 
one expects that X(u) should have a Fourier trans­
form A(X) which behaves like exp (-f..I Ixl) for x 
large, f..I being the binding energy of the fermions. [To 
see the asymptotic behavior of A(X) one has simply 
to look at the pole of X(u) which is nearest the 
real axis. This is the way one should proceed in 
general when the function is given in momentum 
space.] 

It is indeed the case, and the problem we want 
to solve is to determine what cutoff on the momen­
tum variable u can one introduce so as to make 
the integrals (i) and (ii) convergent and so as still 
to have IA(x) I s exp (-f..I Ix/) for x large. In this 
problem again we notice that, due to the one pair 

1 G. Chew, "S-Matrix Theory of Strong Interactions" in 
Frontier8 in Physics (W. A. Benjamin, Inc., New York, 1962). 

I E. Ahem and C. Zemach, Phys. Rev. 131, 2305 (1963). 
I C. Ihara and S. Hatano: Progr. Theoret. Phys. (Kyoto) 

20, 356 (1958). 

approximation, only the expression of A(X) for x 
large has a direct physical meaning. 

The solution of the Schrodinger equation with the 
potential calculated in a certain order of perturbation 
in the first example, or the integrand in an integral 
equation after a certain number of iterations in the 
second example, or the function X in the one pair 
approximation in the third example is called "the 
perturbative function fp." The function obtained 
from this one by further introducing a cutoff in 
momentum space is called the "modified function 
fm"; a function calculated from the perturbative 
function by any process, such as integration, is also 
called a perturbative function, and the function 
obtained by the same process from the modified 
function is called modified function. We also use 
the terminology "exact potential V." "exact func­
tion" etc .... in the obvious sense: the potential 
calculated to all orders of perturbation or a function 
deduced from this one. The philosophy of the cutoff 
procedure is that the "modified function" is hoped to 
be a better approximation to the exact function than 
the perturbative function. 

Now, as we have said, the mathematical properties 
we will give indicate, roughly speaking, what 
smoothed cutoff can be put on a perturbative func­
tion in momentum space so as to respect in a certain 
sense its asymptotic behavior in x space and so as 
to have a normalization condition such as (i). (In the 
case of dispersion theory the normalization condition 
consists in giving the value of the scattering ampli­
tude for a given value of the variable s.) Thus they 
indicate what is the smallest cutoff compatible with 
the knowledge of the interaction that one has 
acquired after having stopped at a given order of 
perturbation, the idea being that the cutoff pro­
cedure remedies somewhat the imperfection due to 
the fact that we use functions calculated only in 
a finite order of perturbation. But it is then essential 
that the cutoff procedure should not spoil the correct 
features of the perturbative function, and among 
these correct features an important one is as we 
have shown, the behavior of f(x) for x large. 

We now consider, to be more specific, the per­
turbative wavefunction Y;P representing an S-wave 
bound state 

where vp(r) is the perturbative radial wavefunction. 
The three-dimensional Fourier transform of y;p(x) is 
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where Fp(x) is the primitive which tends to zero as 
x ~ co of the function w,,(x) defined by wp(x)=v,,(x) 
for x > 0, wp(x) = -v,,( -x) for x < o. 

w,,(x) is, for instance, the bound-state solution of 
a one-dimensional Schrodinger equation 

where Vp(x) is a perturbative potential (i.e., an 
approximate potential in the sense already given). 

We start by making the following remark which 
is fundamental for the problem we consider: classical 
theorems show that, no matter how much the per­
turbative function Fp(x) approaches the exact func­
tion F.(x), as long as they are not actually equal 
on the whole x axis. the behavior for lui ~ co of 
the Fourier transform Fp(u) of Fp(x) gives no indica­
tion on the behavior of Fe(u) for lui ~ co. Thus 
we must look elsewhere for an indication on the 
asymptotic behavior of F.(u) for u ~ co. 

Such an indication is given by the fact that one 
gets good numerical results in many problems when 
one introduces a damping function or a cutoff for u, 
that is to say a restriction of the Fourier transform 
on an interval around the origin. We therefore 
assume that F.(u) decreases with great rapidity, 
i.e., that it is well approximated by a F m(u) cor­
responding to a certain well chosen cutoff introduced 
in Fp(u) and the problem is: what can be said about 
the value Uo of the variable u such that for u > Uo, 

Fe(u) is small enough to be neglected (IFe(u)1 small 
for lui> uo) when the behavior of Fe(x) for Ixl ~ co 

is known. (From the considerations in the introduc­
tion one can reasonably assume that F.(x) "" Fp(x) 
for Ixl ~ co.) 

We can sum up the situation by saying that Fe(x) 
is well approximated by Fp(x) for Ixl ~ co (property 
of approximation methods used in field theory), but 
Fe(u) is suitably approximated by F m(u), for lui ~ co. 

II. PRELIMINARY MATHEMATICAL 
CONSIDERATIONS 

It follows from well-known theorems of mathe­
matical analysis, that the Fourier transform of a 
function F(x), not identically zero, satisfying an 
inequality of the form 

F(x) ~ exp [-C(lxl)] (a) 

with 

f C(u)u -2 du = co (for instance C(u) = }J. lui) 

cannot have a finite support.4 But it can be shown 
that, C(u) being nondecreasing and such that 

f C(u)u- 2 du < co, 

then there exists a quantity 0* with the property 
that no function F satisfying (a) [with C satisfying 
({3)] and properly normalized (by its L2 norm, or 
simply by the absolute value of its Fourier transform 
at the origin) can have its support inside (- 0*, 0*) 
(see for instance Ref. 5). 

For a general class of functions C(u), for instance 
when C(u) is a power of u, 0* is of the form 0* = 'Yll 
where l' is a constant independent of the norm, and 
where [- Il, Il] is the support of a function feu), 
even and not negative, the construction of which is 
useful for our purpose. If we denote by C,,(u) the 
restriction of C(u) in the interval (a, co) (a > 0) 
and [C,,(u)] its integer part [i.e., the largest integer 
not larger than C,,(u)] we consider the points of 
abscissa l/vn where [C,,(u)] has discontinuities. kn 

being the corresponding jump of [C,,(u)], we denote 
by l}J.nl the sequence of all the Vn each one repeated 
kn times. 

If we denote then by pp(u) the function equal 
to 1/2,6 for lui ~ ,6 and 0 elsewhere, we construct 
the infinite convolution 

a lim Pa * Pa * p~, * p~, * ... * P~n; 
n=co 

that is to say the function 

p(u) = lim 7r(}J.I}J.2 '" }J.,,2
nr ' 

x i: dv L:~ dtn L:~~', dtn- 1 

X f"', Pa(u + v + tl + ... + tn) dt , . 

This limit exists whenever f~ C(u)u- 2 exists and 
P is the Fourier transform of the restriction on the 
real axis R of the entire function 

( ) (sin az? rroo 
sin }J.nZ 

P Z = az2 1--;;:;- (z = x + iy). 

With a suitable choice of a and a, the support of 
the corresponding function P gives the value of Il. 

4 This follows from Paley-Wiener's theorem and a theore!? 
solving the famous Watson's problem. See S. MandelbroJt 
Series adherentes. Regularisation des suites. Applications. 
(Gauthier-Villars, Paris, 1952), and S. Mandelbrojt "CI~sses 
of infinitely differentiable functions" The RlCe InstItute 
Pamphlet Vol. XXIX (1942). 

• S. Mandelbrojt, J. Anal. Math. (Jerusalem) 10, 381 
(1962-1963). 
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If we take 4>(u) = p(u) IlpWt, 4> is the Fourier 
transform of a function <P such that 

I <I>(x) I ::; A exp [-C(lxD}, A = IIpll-t, 
114>11 = 1, 4>(u) = 0 for lui> A, 

and for every function F of which the Fourier trans­
form has its support in (-0, 0) and which satisfies (a) 
I F is roughly speaking the restriction of an entire 
function F(z) satisfying IF(z)1 ~ A exp [0 I yl -
COx!»)}, we have 0 2:: 'YA. 

Our purpose is to show that in the case of diver­
gence of the integral in (fJ) [for instance if C(u) = 
p. lu/J, an analogous construction yields no longer 
a sharp cutoff, but a quantity which, to our under­
standing, should replace it. 

m. AN EXAMPLE USEFUL IN PHYSICS 

We now turn to the simple example where wp(u) 
corresponds to a bound state of binding energy jJ. 
[wp(u) is, for instance, the function ;\(u) of example 3 
in the introduction, the normalization condition we 
will use is the one corresponding to that example]. 
We have taken for simplicity the function p.(u) = 0 
(not to be mixed up with the binding energy jJ.). 
Then wp(u) has a pole on the imaginary axis at a 
distance p. from the real axis. 

The functions wp(x) are defined up to a multiplica­
tive constant. We suppose that one of them is 
asymptotic to exp (- p. Ix!) at x = ± co. This is 
the solution we choose. (The choice of this solution 
can usually be made without having to go over to 
the x space. One has just to look at the residue 
of the pole p..) The essence of the cutoff procedure 
is that 

lVm(U) ~ A'tvp(u) for -0 < u < 0, 

wm(u) negligible for lui> 0, 

A' being a multiplicative constant which corresponds 
to the fact that the functions ware solutions of 
an homogeneous equation, 0 being the hitherto un­
known cutoff. 

The constant A' is related to the cutoff li by the 
normalization relationship 

f +OO fO 
_'" w!(u) du ~ _0 tv!(u) du 

• 
AI21. w!(u) du = 1. 

This is a first relationship between A I and li [let us 
recall that wp(u) is known, for instance in the ex­
ample 3, it is ;\(u)]. The mathematical theory which 
we use will give us a second relationship as follows. 

FIG. 1. Curve representing Wp(x). The 
dotted curve represents exp AI (-pix!). 

(The first relationship depends specifically on the 
function w,,(u) , whereas the second relationship 
which we derive later will be the same for all the 
functions having the same asymptotic behavior for 
Ixi -+ co.J 

According to the remarks given in the introduction 
wm(x) will behave for Ixl -+ co like A'wp(x) that is 
like A' exp (-p. Ix/). We are thus led to the study 
of the more general class of functions which satisfy 
the following two conditions: 

lim sup Iwm(x) I exp (p. Ixl) ::; A', 
!XJ-HQ 

We now replace these conditions by conditions on 
F m(X) [which is defined as the primitive of wm(x) 
which tends to zero for x -+ co 1 : 

limsupexp(p.lxl) IFm(X) I ::; A, with A = A'/p. 
!r.1 =00 

i:'" lu2 F\tt) I du = 2r. h) 

We now go one step further and replace the asymp­
totic condition ('Y) by the inequality 

/Fm(X) I ~ A exp (-p.lxf) (1) 

on the whole axis. The fact that this condition is 
imposed on the whole x axis is the weaker point of 
our argument. However, if one bears in mind that 
w,,(x) corresponds to a bound state, and thus, the 
interaction being attractive, has its curvature at the 
inflexion point R as indicated (see Fig. 1, R being 
roughly the range of the potential in the case of 
a Schrodinger equation) then one sees that wp(x) 
and also Fp(x), do satisfy the inequality on the 
whole x axis. Now recalling that wm(x) is obtained 
from wp(x) by modifying the interaction at short 
distances [if one has gone far enough in the perturba­
tion series for the calculation of wp(x)J and recalling 
furthermore that Fm(x) is a primitive of wm(x) so 
that the modifications on wp(x) to obtain wm(x) are 
somewhat smoothed out by the process of integration 
[since wm(x) is different from wp(x) only in a small 
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region around the origin for x] it is seen that it is 
natural to impose the condition IF(x) ~ A exp 
( - p. Ixi) on the whole x axis. We are thus led to 
the study of the Fourier transform of functions F(x) 
which satisfy the inequality 

IF (x) I ~ A exp (-p. Ixi) (2) 

and the normalization relationship 

It can be shown that M.(~(u» is the Fourier 
transform of 

F ( ~ = sin
2 

(ex) n"" . (~)!! , XI (2) SIn , ex n-l n x 

the product n (sin (z/n)n/z) converging uniformly 
in each compact of the complex plane, F.(z) is thus 
an even entire function. 

It satisfies, moreover, the following inequality: 

(3) IF.(z)1 ~ A. exp [cp.ClYI) - IzlJ (z = x + iy) (4) 

Now recalling that the Fourier transform of a 
function F(x) satisfying (2) cannot have a finite 
support, i.e., F(x) cannot be the restriction on the 
real axis of an entire function F(z) of exponential 
type, we thus discard the condition that F(z) is of 
exponential type and replace it by the weaker hy­
pothesis that it is an entire function, which condition 
is natural enough, since we want F(u) to decrease 
rapidly when lui -? ro. 

But even with only these hypotheses the con­
struction mentioned at the end of II still provides 
a function [denoted below by K(p., Ai u)] of which 
the inflexion point (for u > 0) generates a "natural 
cutoff" of the Fourier transform of all functions F 
satisfying (2) and (3). We feel it necessary to go 
through the mathematical analysis which follows, 
since it justifies, on one hand, the point of view 
just mentioned, and permits us, on the other hand, 
to carry out the numerical applications of our 
principle. 

Let us begin by some preliminary considerations. 
Denote by 

.6..(u) the function defined for e > 0, 

.6..(u) = 1, for lui ~ e , 

.6..(u) = 0, for lui> ei 

and set 

1

1/n 11/(n-1) 
~n(Y) = -m! 2-n dtn dtn_1 

-lin -1/(n-1) 

X fl .6.,(y + tl + t2 + ... + tn) dtl 

~(y) = lim ~n(Y). 

where A. depends only on e, and where (see Ref. 5) 

[ . (u u
2

) • ( e
2

u
2

)] cp,(u) = L: mill n' 2n2 + mill cu, 2 . 

We have, moreover, 

IF.(x)1 ~ B. exp (-Ix!), 
where 

B. = c exp (P.), (5) 

the quantity p. being defined by P. max (p, 1) 
with p given by 

c2pl exp (P) = (211")1 exp (13/12). 

This follows from the obvious inequalities 

IF,(x) I ~ e ( - ro < X < ro), 

1F,(x) I ~ (ex)-2 inf n! x-n 

n 

(x > 0), 

where [x] denotes the integral part of x, the second 
inequality furnishing, by Stirling's formula, for x ~ 1: 

IF.(x) I ~ (ox2)-\211"x)i exp (-[x] + 12~X]) , 

O<fJ<1. 

We set now for a > 0, p. > 0: 

F () sin2 (az) n"" . (IJ.Z) n z = SIn - -. p.a ~ n-l n IJ.Z 

It is clear that Fp.a(z) = p. ]alp(P.Z) and 

[Fp.a(x)( = p.[FaIP(p.x)( = Fa,iu/p.). 

With B, defined as in (5) we get 

IF,..a(x) I ~ p.Ba,p exp (-p.lx/). (6) 

This limit exists and represents an even positive We have also 
function. We shall also write, !fey) being a (locally 
integrable) function: IFp,a(z)1 ~ A,.,a exp [cpp, .. (ly!) - p. IzlJ, (7) 

1 1+' M.(!f(u» = 2c _, !f(U + y) dy. 
where A p, .. = p.A a1p, A. being defined as in (4), 
and where 
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" 
+ min (au, aV/2) (u> 0). 

A > 0 being given, let us define a = a(A), by 
a = inf a', where 

A lIuJi\.a.(u)112 ~ ,JJ .. ,/" (21r)i. 

This inequality amounts to 

A! lIuF""I'(u)lb ~ (21r)iB"'II" 

Let us set, with this choice of a, 

Ko(x) = Ko(JI., A; x) = F".,,(x)/IIF~.0(x)1I2' 
We have then obviously 

I!K~{x)112 = 1 

and 

(8) 

(9) 

(10) 

IKo(x) I :::; A exp (- Jl.lxj). (11) 

Denote by K (JI., A; u) the Fourier transform of 
Ko(fJ., A; u): 

K(u) = K(fJ., A; u) = [Ko(fJ., A; x)(. 

The inflection point of the function K(u) so determined 
furnishes the natural cutoff of functions F(x) satisfying 
(2) and (3). 

We shall now explain why this way of introducing 
the cutoff seems natural to us. 

As it has been said before, if (fJ) holds and if 
IF(x)1 :::; exp [-C(!x!)], !F(O) I ~ B > 0 (without 
having to suppose a priori an inequality in the 
complex plane), then F(u) cannot be zero for 
lui> 0* - E (E > 0), 0* being a number depending 
on the quantity B and the function C [at least if 
we suppose that C(u) is a convex function of log 
u (u > 0)]. 

And, as we said, there is nothing to change in 
the reasoning when the condition IF(O)I ~ B is 
replaced by a condition of the type IIF(u)1I2 ~ B 
or lIuF(u)112 ~ B; the quantity 0* has only to be 
replaced by a corresponding quantity 0** or 0***. 
The function furnishing the quantity 0*, when (fJ) 
holds, is given by the function (here we set a = 1, 
and Kt is then the corresponding p of Sec. II) 

K *f) - . 2 (~) -2 II sin (fJ."z) o\z - sm 2 Z , 
fJ."Z 

(12) 

where the p." are defined above. And we have then 

K't(u) = ~~ 1r(2"Jl.lfJ.2 '" p.,,)-l L'o dv J:I': dt" •.. 

X J::, t1{y + v + tl + t2 ••• tn) dt l , 

where t1(u) = 1 for lui :::; !, t1(u) = 0 for lui > t. 
If 

1'" C(u)u -2 du = 00, 

and if 

IF(x)1 :::; exp [-C(lxD], 

there is no 0 such that F(u) = 0 for lui> o. But, 
provided the condition 

(14) 

is satisfied, the previous constructions are still pos­
sible: the expressions (12) and (13) still converge 
and represent correspondingly an even entire func­
tion and the Fourier transform of its restriction on 
the real axis. 

The Fourier transform J(*(u) [if (14) holds but 
(fJ) does not hold] is not any more zero outside an 
interval, but it decreases rapidly to zero when u > 0 
tends to <XI (and, of course, when u tends to - 00, 

since the function is even), most of its decreasing 
being realized on the part of the axis stretching from 
the origin to its inflection point; afterwards its deriv­
ative is virtually stabilized-it is, of course, still 
negative but it is near to zero. 

The abscissa of the inflection point of J(*(u) (for 
u > 0), multiplied by the numerical constant 'Y 
introduced above, seems to be a natural substitute 
for the nonexisting 0* (or 0** or 0*** when adequate 
normalizations are performed). 

Of course the case C (u) = Jl.U is a particular one 
corresponding to (14); the quantities p." are then 
equal to fJ./n and the construction we dealt with 
above corresponds exactly to what has to be done 
in that case. (The constant a is introduced for 
normalization purposes). 

There is also another reason why the graph of 
K(u) = K(p., A; u) should be considered as furnish­
ing a "natural cutoff" for functions satisfying the 
condition IF(x) I :::; A exp (-fJ. Ixl) and normalized 
in a proper way. 

To construct K(u) one begins by considering the 
function t1.(u), with t1.(u) = 1 for lui:::; c, t1.(u) = 0 
for lui > c. Now 1rt1.(u) is the Fourier transform 
of sin (cx)/x. The real cutoff of its Fourier transform, 
represented by u = c, is then successively increased 
by lin (n ~ 1), this Fourier transform being 
diminished in parts (mostly at the ends) of the 
newly obtained interval (that is to say the Fourier 
transform being "swept" by an averaging process 
to all the points of the new support), the function 
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FIG. 2. Curve representing ,,/-y. 
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AH A 

itself being each time multiplied by (sin x/n) n/x; 
these successive increases of the support of the 
Fourier transform seem to be the smallest possible 
consistent with the fact that the obtained function 
[here 

. ex II . (x) n] sm - sm - -
x n x 

should decrease as A exp (- Ix/).In other words, 
a deformation as "economical" as possible on a "true 
cutoff" is made in order to obtain a function with 
a given behavior at infinity. 

Simple changes of variables and normalizations 
lead to the function K(u) itself. 

It is now our purpose to show how fast K(p., A; u) 
decreases when lui -> OJ . We have 

FcCu) = i: Fc(x) exp (-ixu) dx, 

and, y being any real number, we see easily by 
Cauchy's theorem that we have also 

1
"'+i Y 

FJu) = -"'+iy Fc(z) exp (-i'Uz) dx (z = x + iy). 

It follows then from the inequality (4) that 

IF.(u)1 ~ Pc exp [IP.(lyl) + uy]. 

If we set u > 0, we see that 

IP'(u) I ~ Pc exp [inf{IPc(Y) - uy)]. 
y>O 

But, it follows from the definition of IP. that for 
every ~ > 0 

IPc(Y) < Y (log Y + ! + ~ + e) 

provided y > y •. We find then that 

IP.(u)1 ~ N,P. exp [-exp (u - ~ - e - n 
where N. depends only on ~. Therefore, 

1[F~.a(x)n = ka/~(~)1 ~ N,Pal" 

X exp [ - exp (~ - ~ - ~ - ~) 1 

Let us notice that the curve 

y = exp [-exp (u - d)], d>O 

has its inflection point (for u > 0) at u = d. One 
can also see that for u 2:: 2p. 

We thus have an indication for the rate of decrease 
of Fal,,(u/p.) for u -> OJ. We see, in particular, that 
after a certain point it decreases extremely rapidly 
(more rapidly than the inverse of an exponential 
of an exponential) so that a well-chosen straight 
cutoff gives a good approximation to its behavior 
as long as we stay in momentum space. 

IV. RESULTS AND INTERPRETATIONS 

The coupled equations of Sec. III which give the 
minimum cutoff 0 as a function of A and p. have 
been solved numerically in a first approximation 
[where only the first three factors in the infinite 
product giving F".a(z) are considered] by Bourrely.6 
The results are best visualized with the following 
curve (Fig. 2). The physical meaning of this curve 
is very significative. We see that for A > An 
(AH being a constant determined once p. is given), 
o/y is, in this approximation, simply p. [a calculation 
using more terms in the infinite product F",a(z) shows 
that o/y -> p. as A -> OJ]. This is what should be 
expected from the uncertainty relation: indeed for 
a function IF(x) I ~ A exp (- p.lx/) (A large enough), 
the "standard deviation" .6x is of the order 1/ J.I, 
and ~u is 20, thus the uncertainty relation, ~x· ~u ~ 
const, gives 0/ p. = const. This interval A > AH 
will be called the "Heisenberg interval H." 

If however A is very small, the relation IF(x) I ~ 
A exp (-p. Ix/) together with the normalization 
condition J [F'(xW dx = 1 implies that F(x) has 
many large oscillations, this is indeed the only way 
to have IF' (x) I large enough to have the normaliza­
tion condition while having IF(x)1 small. In this 
region (non H), ~x has no longer any link with the 
asymptotic behavior of F(x) given by A exp (-p.lx/). 
In fact in this region ~x has no longer any significant 
physical meaning and 0 can only be calculated with 
our method. 
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Formulations are presented for the second quantized versions of the field theories which lead to 
Corben's equations of motion. It is demonstrated that an indefinite metric is required to guarantee 
positive energies for all the particles, but that otherwise the theories are physically unambiguous. The 
number and properties of the resulting particles are studied and compared with the conclusions from 
previous work. Alternative formulations are also discussed. 

I. INTRODUCTION 

A SET of relativistic wave equations have re­
cently been proposed whose solutions yield the 

mass spectra of free particles and their spins in the 
range 0, !, 1, !, or 2.1.2 It has been argued1

•
2 that 

the quantum theories which incorporate these equa­
tions connect in the correspondence limit to the 
classical, relativistic theory of spinning particles 
derived some time ago by Bhabha and Corben.3 A 
few recent reports have been devoted to showing 
that the quantum mechanical version of this theory­
i.e., a set of wave equations-implies a collection 
of particles whose masses, charges, and spins show 
an impressive similarity to those of the stable par­
ticles and resonances presently observed.4

-
7 

In this paper the structure of the Corben theory 
is studied in detail. The field theories which lead 
to these equations are shown to allow a physically 
consistent second quantization, and the number and 
properties of the particles which emerge are re­
examined from this viewpoint. 

The four Corben equations, together with the 
spins of the associated particles, are 

U-l'Y~ fJ~ + m + imo(1'~.(1'~.)1/I = 0 (spin 0, 1), (1) 

U-l'Y~ fJ~ + m + !mo(1'~.f'~.)1/I = 0 (spin!, !), (2) 

(i-lf'~ fJ~ + m + !mof'~.(1'~.)1/I = 0 (spin!, !), (3) 

(i-lf'~ fJ~ + m + mo{3~.f'~.)1/I = 0 (spin 0, 1,2). (4) 

The 'Y", 'Y~, f'~, f'~ are all to be considered as acting 

* Research supported partly by the Office of Naval Re­
search, the Space Technology Laboratories Company In­
dependent Research Program, and the National Science 
Foundation. 

1 H. C. Corben, Proc. Nat. Acad. Sci. 48,1559,1746 (1962). 
2 H. C. Corben, Nuovo Cimento 28, 202 (1963). 
3 H. J. Bhabha and H. C. Corben, Proc. Roy. Soc. (London) 

A178, 273 (1941). 
• H. C. Corbell, Phys. Rev. Letters 10, 555 (1963). 
• H. C. Corbell, Phys. Rev. 131, 2219 (1963). 
6 H. C. Corben, Phys. Rev. 134, B832 (1964). 
7 H. C. Corbell, J. Math. Phys. 5, 1664 (1964). 

on separate vector spaces, and hence the dimension 
of each 1/1 is the product of the dimensions of the 
two such operators which occur in the equation. 
The 'Y ~ and 'Y~ are four dimensional and fulfill the 
Dirac anticommutation rules, 

hM 'Y.I = h~, 'Y~I = -20m (5) 

whereas the f'~ and 1" are either one-, five-, or ten­
dimensional and satisfy the Duffin-Kemmer-Petiau 
relation typified by8 

The 'Y., 'Y~, f'~, f'~ are all chosen to be anti-Hermitian, 
and (1'~. = !i['Y~, 'Y.l, f'~. = i[f'~, f'.l with similar 
relations for the primed matrices. Each of the Eqs. 
(1-4) has two parameters, m and mo. Although the 
best "fit" to the observed particle spectra is obtained 
by giving these parameters somewhat different 
values in the four cases, we do not make this distinc­
tion. Each of the four equations will be discussed 
separately, and it will always be clear from the 
context to which equation the parameters refer. 

In Secs. II-V, we discuss in turn each of the 
theories which incorporate Eqs. (1)-(4). The theory 
corresponding to Eq. (1) is studied in Sec. II. Two 
alternative formulations are presented, but the first 
formulation is considered the more natural; all the 
solutions to Eq. (1) are retained, and a parity 
suggests itself for all the resulting particles. The 
charges also are determined if the electric current 
proposed by Corben is employed. In contrast to 
this approach, we then note in the second formula­
tion that almost none of these conclusions are 
actually necessary if all we require is the existence 
of a field 1/1 satisfying Eq. (1). There exists the 
freedom, consistent with this requirement, to retain 
arbitrarily few of the solutions to Eq. (1) and to 
designate independently the charges and parities of 

8 N. Kemmer, Proc. Roy. Soc. (London) A173, 91 (1939). 
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the remammg particles. When this freedom is 
utilized, however, the field if; assumes a rather remote 
role, which is difficult to understand if Eq. (1) is 
to be the basis of the theory. 

In Secs. III-V we display the structure of the 
theories corresponding to Eqs. 2-4 from a viewpoint 
analogous to the first formulation in Sec. II. The 
properties of the solutions are presented in detail, 
and they are shown to be different, in some respects, 
from what was believed previously. In particular, 
we shall see that for each mass and spin the multi­
plicity of the solutions is not in agreement with 
the observed particle spectrum, and that it will be 
difficult to rule out only the unwanted solutions in 
a general manner. However, we emphasize that these 
theories could also be formulated in analogy with 
the second approach in Sec. II. If this were done, 
and the unpleasant feature referred to above were 
accepted, it would then be possible to retain only 
those solutions which can be made to correspond 
to observed particles. From either point of view, 
the spin of a solution is fixed by the theory. 

II. FIELD THEORY OF EQUATION (1) 

A. First Formulation 

In analogy with the conventional Dirac theory, 
the field equation (1) suggests a Lagrangian density 

.e = ~('Y"i-Ia" + mll)if;, (7) 

with 

(8) 

and 

~ = if; + 'Yo'Y~· 

From the Lagrangian density in Eq. (7), the expres­
sions for the energy-momentum 4-vector, and for 
the generalized angular momentum tensor can be 
derived in the standard manner. There results 

P j = :J dx hoi-I ajif;:, (9) 

and 

J". = : J dx ho(x"r l a, - x.i-
1 a" + ;u". + ;u~.)if;:. 

(11) 

The double dots on both sides of these expressions 
indicate the normal ordered products obtained by 
moving all destruction operators to the right. From 

Eq. (11) we see that the spin of the particles con­
tained in the field if; is !Cd + d') and it is therefore 
either ° or 1. Complying with the TOP theorem, 9 

we postulate the commutation rules 

[if; (x) , ~(yho]%.-Uo = o(x - y). (12) 

To see more clearly the decomposition of the field 
if; into its normal modes (i.e., particles), we describe 
the theory in momentum space. Once this is accom­
plished, it will also be easy to check that all the 
particles yield a positive contribution to the energy 
in Eq. (10). We write 

if;(x) = (;;)3 f d4p if;(p)eifl
'%, (13) 

and observe from Eq. (1) that if;(P) satisfies 

('Y'P + ml1)if;(P) = 0, (14) 

which, for zero 3-momentum, reduces to 

'Yomllif;(O, W) = Wif;(O, W). (15) 

If we multiply Eq. (15) with the matrix 'Yomlh we 
obtain 

W2if;(0, W) = m(m + mod'd')if;(O, W), (16) 

so that 1.6 

W 2 = m(m - 3mo), (d'd' = -3, spinO) 

W 2 = m(m + mo), (d'd' = 1, spin 1) 

represents the mass spectrum. 

(17a) 

(17b) 

In case (17a), there are four linearly independent 
states corresponding to the four combinations of the 
signs of Wand of the eigenvalue (either +1 or -1) 
of 'Yo'Y~. In case (17b) there are twelve such states 
which reflect the same alternatives separately for 
each of the three orientations of the total spin. If we 
let a indicate the mass and spin orientation and 
display the sign of 'Yo'Y~ explicitly, we can write 

if;(0, W) = L {[a+(a)u+(a) + a_(a)u_(a)]8(W) 
a 

where 8(W) is one for W positive and zero otherwise. 
The m! designates either of the two solutions in 
Eq. (17), and the a± (a) and b± (a) are destruction 
operators in the Hilbert space for the corresponding 
particle and antiparticle states. 

In terms of u±(a) and v±(a), which describe the 
particles and antiparticles at rest, we can construct 
the solutions for arbitrary momenta by applying 

9 G. Luders, Ann. Phys. (N. Y.) 2, 1 (1957). 
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the appropriate Lorentz transformations. That is, 
defining 

u±(p, a) == exp [!P.(U.4 + u~4)tJa(P)lu±(a), (19a) 

v±(P, a) == exp [!P.(Ui4 + u~4)tJa(P)1 v±(a), (19b) 

where tJa(p) == sinh-1 pima and P = p Ipl-r, there 
follows 

('YOPa + mrl)u±(p, a) = 0 

(-yoPa + mr1)v±(p, a) = 0, 

where Pa = (p, [p2 + m!p). We can now write 

",(p, Po) = 1: {[a+(p, a)u+(p, a) 
a 

+ a_(p, a)u_(p, a)]tJ(po) + [b:(-p, a)v+(-p, a) 

(20) 

+ b~(-p, a)v_(-p, a)]O(-po)}o(p2 - m!), (21) 

and by substituting this expression into Eq. (13) 

I "1 dp "'(x) = (2'11'/ ~ 2wa(P) ([a+(p, a)u+(p, a) 

+ a_(p, a)u_(p, a)]e'Pox 

+ [b:(p, a)v+(p, a) + b~(p, a)v_(p, a)]e-'POX
} 0 (22) 

where wa(p) = (p2 + m!)'. 

The orthogonality properties of the u± (p, a) and 
v± (p, a) are derived in the Appendix. With a con­
venient normalization, they can be expressed as 

and 

u~(p, ah~u_(p, a') = 0, 

u:(p, ah~v±( -p, a') = 0, 

v~(p, ah~v-(p, a') = 0, 

u:(p, ah~u±(p, a') = ±2wa(p)oaa" 

v:(p, ah~v±(p, a') = =r2wa(p)oaa" 

(23a) 

(23b) 

These relations then allow Eq. (22) to be inverted 

a±(P, a) = ± J dx e-'Pxu:(p, ah~"'(x) (24a) 

b±(p, a) = =r J dx l(xh~v±(P, a)e-'Pz, (24b) 

so that from Eq. (12) we have the commutation rules 

[a±(P, a), a:(p', a')] = [b±(P, a), b:(p', a')] 

= ±2wa(P)(211·lo aa ,o(p - p'). (25) 

All other commutators are zero. We note in particular 
that the operators for the modes with the negative 

signature (sign of 'Yo'Y~) demonstrate the "wrong" 
sign in their commutation rules. Before we discuss 
this feature, let us look at the expression for the 
energy in Eq. (10) when expressed in terms of these 
elementary creation and destruction operators. By 
substituting Eq. (22) into Eq. (10) and employing 
the relations (23), we obtain 

1 "1 dp t H = (2.11'/ ~ 2wa(P) [a+(p, a)a+(p, a) 

+ b:(p, a)b+(p, a) - a~(p, a)a_(p, a) 

- b!(p, a)b_(p, a)]wa(P). (26) 

We observe that in both Eqs. (25) and (26) the 
terms involving the modes with the negative signa­
ture appear with a sign opposite to what is conven­
tional. 10 In both instances this situation would be 
corrected if we could simply interpret a~(p, a) and 
b~(p, a) as not the Hermitian adjoints of a_(p, a) 
and b_(p, a), but the negative of the Hermitian 
adjoints.ll Formally this can be realized if we think 
of the theory as quantized with an indefinite metric. 
That is, if the usual Hermitian adjoint is denoted 
by an asterisk (*), we can define 

y;t = TJY;*TJ, 

where the metric TJ is 

t -I {7ri "J dp 
TJ = TJ = TJ = exp (27rl ~ 2wa(P) 

. [a!(p, a)a_(p, a) + b~(P, a)b_(p, a)]}. 

(27) 

(28) 

Let us think of the theory as quantized with this 
indefinite metric, but realize that it is simply a 
formal device for reinterpreting the t adjoint. For 
the positive signature modes, the t adjoint and the 
Hermitian adjoint are the same. 

With this reinterpretation, the theory defined by 
the Lagrangian density (7) is characterized by a 
positive definite energy, and with a positive norm 
for all states. As a free-field theory, it is therefore 
physically consistent. 

We now discuss the charges and parities of the 
particles. We have seen that there are eight particles 
in the theory, four with spin 0 and four with spin I. 
Equation (17) shows that the masses of the particles 
depend only on their spin and that the spin-I par­
ticles are the more massive. As has been suggested, 6 

10 Similar problems have arisen in other theories in which 
one wave equation describes more than one particle. A. Pais 
and G. E. Uhlenbeck, Phys. Rev. 79, 145 (1950). 

11 To conserve probability, any extension of the theory 
to include interactions would have to be carefully constructed 
to guarantee that the interaction Hamiltonian was Hermitian 
[in the * sensel. 
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the parameters m and mo can be adjusted to fit 
the masses of the spin-O and spin-l particles to the 
observed masses of the K and K* mesons. 

The electric current which has been proposed 
for the theory of Eq. (1) is 

j~ = e :if'Yp1/;:, (29) 

and the operator for the charge is therefore 

Q = e : f dx ho1/;. (30) 

In order to make clear the charges .carried by the 
various particles, we express Eq. (30) explicitly in 
terms of the elementary creation and destruction 
operators. By decomposing the fields 1/; and if in 
Eq. (30) according to Eq. (22), and making use 
of the relations (23), we obtain 

Q-_e_Lf~ 
- (2'1f')3" 2w,,(P) 

• [a:(p, ex)a+(p, ex) - b:(p, ex)b+(P, ex) 

- a~(p, ex)a_(p, ex) + b~(p, ex)b_(P, ex)]. (31) 

The charges carried by all the particles are now 
apparent, if we compare Eq. (31) with Eq. (26) 
and remember that all the modes must contribute 
a positive energy. The particles destroyed by the 
operators a,,(p, ex) carry the charge e, whereas 
those destroyed by the b" (p, ex) have the opposite 
charge. In particular, none of the particles are 
electrically neutral [if the electric current is given 
by (29)], and thus it is inconsistent to conclude 
that the theory (as formulated here) describes the 
K and K* mesons. 

If space inversion (i.e., parity) is to be represented 
by a simple transformation of the field 1/;, the natural 
choice which suggests itself is 

P : 1/;(x, t) ~ 'Yo'Y61/;( -x, t). (32) 

From Eq. (24), it follows from this definition that 

p : a±(p, ex) ~ ±a±( -p, ex) (33) 

b±(p, ex) ~ ±b",(-p, ex), 

and the eight particles divide into two scalars (these 
with positive signature), two pseudoscalars, two 
vectors (with negative signature), and two pseudo­
vectors. As before, these conclusions do not allow 
the theory, as it stands, to describe the K and K*. 

B. Alternative Formulation of the Theory of Equation (1) 

We now construct the theory described by Eq. (1) 
in a manner which will make more clear the connec-

tion between the formulation in part A and the 
conventional field theory of particles with spin 0 
and 1. We consider Eq. (1) as the requisite feature 
of the theory and see what freedom is allowed. 

Let us write the field 1/; as 1/; "fJ, a four-by-four 
matrix, where the unprimed Dirac operators act on 
the first subscript and the primed operators act on 
the second. It can readily be verified, after consider­
able algebra, that if we define 

1/;(x) = ~ [(!m)iq,(x) + (lm)iO(xh6 

- [l(m + mo)] { Vix) - ~ iJl'q,(x)}1' 

+ [l(m + mo)] { A,,(x) + ~ iJiJ(x) }1''Ys 

- [8(m + mo)rt[oI'V'(X) - iJ. Vix)] 

+ EI"afJ o"AfJ(x)O"I" J, 
so that 

q,(x) = (21m)! Tr [1/;0"2] 

O(x) = (2Im)l Tr [1/;u2'Ya] 

(34) 

(35a) 

(35b) 

V,,(x) = [2/(m + mo)]1 Tr (1/;u2'Y,,'Ya + i a,,1/;0"2/m] 
(35c) 

A..(x) = [2/(m+ mo)]!Tr[1/;u2'Yp'Y6 - i a,,1/;0"2'Yslm] , 
(35d) 

where Tr means trace, then, to within four diver­
gences, the Lagrangian in Eq. (7) is equal to 

£ = -Uo~q,t apq, + m(m - 3mo)t//q,] 

+ Ua"ot a1'0 + m(m - 3mo)ot 0] 

+ [Ha"v! - o. v!)(op v. - iJ. V,,) 

+ lm(m + mo)V!V,,] 

- [HopA! - a.A!)(apA. - a.AJ 

+ lm(m + mo)A!A1'] • (36) 

Except for the signslo of the terms involving the 
fields 0 and V .. , this is a conventional Lagrangian 
for four uncoupled fields, two of spin 0 and two of 
spin 1, whose masses agree with Eq. (17). 

An alternative point of view can now be adopted 
which still allows Eq. (1) to be satisfied. We take 
the Lagrangian as given by Eq. (36), but with the 
terms involving 0 and VI' changed in sign. These 
changes of sign have the same effect as the introduc­
tion of the indefinite metric in Sec. IIA. The equa­
tions of motion are not altered, and hence the field 
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I/! as defined in Eq. (34) still satisfies Eq. (1). In fact, 
if all we require is Eq. (1), we can ignore in Eq. (36) 
the terms involving as many of the fields 4>, 0, etc. 
as we please, providing that I/! in Eq. (34) is expressed 
only in terms of the retained fields. It is also clear 
that the charges and parities of the remaining 
particles can be fixed arbitrarily. The electric current 
and the parity transformations would then not 
necessarily be given by Eq. (1). In particular, it 
is possible to assign the charges and the parities 
of the eight particles described by Eq. (36) to con­
form to those of the K and K * mesons. 

m. FIELD THEORY OF EQUATION (2) 

Here we formulate the field theory of Eq. (2) in 
analogy with Sec. IIA. The Lagrangian is given by 

oC = -i/i('Y~i-l0~ + ffit2)1/!, (37) 

with 

(38) 

and 

ttl' = -1 - 2~! (p. = 1,2,3,4). (39) 

The operators u". and {:1". have been defined in 
Sec. I. From Eq. (37) we obtain the expressions 
for the energy-momentum 4-vector and for the 
relativistic angular momentum tensor 

P; = :/ dxho [ Ojl/!: (40) 

H = :/ dxi/i(".[ V + ffit2)1/!: (41) 

J". = :/ dxho(xl' [a. - x. [a!' + luI'> + {:1".)I/!:. 

(42) 

If, in analogy with the conventional definition of el, 
we define 

~; = Ew{:1;k (no sum), 

then the particle spins are given by 

S = tel +~. 

(43) 

(44) 

From Eqs. (6) and (43), it follows that ~2(~2 - 2) = 0, 
and hence the ~ spin can be either 0 or 1. The 
total spin in Eq. (44) is therefore either t or !, 
and we thus choose the anticommutation rule9 

{I/!(x), i!i(y)-YoL'.-II. = li(x - y). (45) 

We again describe the theory in momentum space 
in order to check that all of the particles yield a 
positive contribution to the energy, and to observe 
more clearly the features of the implied particles. 
For the p = 0 Fourier components, we have in 
analogy with Eq. (15) 

'YOffit21f(0, W) = WI/!(O, W). (46) 

The solutions to Eq. (46) are listed in Table I of 
Ref. 6. As in Sec. II, we denote the positive and 
negative W solutions of Eq. (46) by u±(a) and v±(a). 
Here a refers to the choice of mass IWI, and to 
the choice of spin and its orientation-both of which 
can be diagonalized simultaneously with the operator 
'Yoffit2 in Eq. (46). The ± sign refers to the eigen­
value of 'Yott.. For each mass and spin, there are 
solutions corresponding to both the eigenvalues + 1 
and -1 of this operator. 

As in Sec. II, the wavefunctions u±(p, a) and 
v±(p, a) for finite 3-momentum can be constructed 
from the u±(a) and v±(a) by Lorentz transformation, 

u±(p, a) = exp [P,(jU;4 + ~i4)O,,(p)]u±(a) 
v±(p, a) = exp [P,(jU;4 + ~;4)8,,(p)]v.,(a), 
and hence 

(-'Y'p" + ffit2)v±(p, a) = O. 

(47a) 

(47b) 

(48) 

The unit vector p and the angle 8 a (p) are defined 
after Eq. (19). We could now write the general solu­
tion of Eq. (2) in the form of Eq. (22), except that 
here the sum on a would refer to the masses and 
spin appropriate to Eq. (2). 

From the Appendix, we have the orthonormality 
relations 

u:(p, a)tt4u_(P, a') = 0, u:(p, a)1/4v±( -Po a') = 0, 

v:(P, a)1/4v_(P, a') = 0, u~(p, a)1/4v±( -p, a') = O. 

(49a) 

and 

u~(P, a)1]4u±(p, a') = ±2w"(P)li",,. 
t (49b) 

v±(p, a)1/4v±(P, a') = =r2w,,(p) 8"",. 

The equivalent of Eq. (22) can now be inverted 
to yield 

a±(p, a) = ± J dxe-i"'%U~(P, a)TI41f(x) (50a) 

b±(p, a) = =r f dxy/ (x) 1/4V± (P , a)e-'''''', (rob) 
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so that from Eqs. (45), (49), and (50) 

{a",(p, a), a:(p'. a')} = {b,,(p, a), b:(p', a' )} 

= ±2<.>"(P)(2'lIl8,.,,,,8(p - p'). (51) 

All other pairs of these operators anticommute. 
Observe, that due to the anticommutation rules, 
the relationship between the sign of the anticom­
mutor and the signature of 1'0714 differs for the oper­
ators b,,(p, a) and b:(p, a) from the corresponding 
expression in Eq. (25). 

Next, we employ the equivalent of Eq. (22) and 
Eqs. (41), (48), and (49) to obtain 

__ 1 "'f~ 
H - (211')3 ~ 2<.> ,,(p) 

X [a:(p, a)a+(p, a) + b~(p. a)b_Cp, a) 

- a~Cp, a)a-Cp, a) - b:Cp, a)b+Cp, a)]w,,(p). (52) 

We note in this case that the terms involving a_(p, a) 
and b+Cp, a) occur with the wrong sign in Eqs. (51) 
and (52). As in Sec. II, we resolve this difficulty 
by reinterpreting the t adjoint of these operators 
to be the negative of the * Hermitian adjoint. 1o

•
ll 

Formally, this can be accomplished by employing 
the definition (27) with 71 given by 

71 = exp t2~3 ~ f 2<.>d:(p) [a~Cp, a)a_(p, a) 

+ b:(p, a)b+(p, a)]}' (53) 

Once this reinterpretation is understood, all the 
particles yield a positive contribution to the energy 
in Eq. (52). To this extent the theory is physically 
admissible. 

The electric current proposed by Corben 6 is 

j" = ±!e :~'Y,,(1 + 71s)if;:, (54) 

where 715 = 711712713714, and the ± sign depends only 
upon the representation of the (3". Each of the solu­
tions to Eq. (46), and therefore the u,,(p, a) and 
v,,(p, a) defined in Eq. (47) are eigenstates of 715' 
We denote by 8", = ± 1, 0 the eigenvalue of ± HI +710) 
and write the operator for the total change, 

Q = ±!e J dX~'Yo(1 + 715)if;: (55) 

in the form 

Q = (2:)3 ~ 8,. f :~) 

By comparing Eq. (56) with Eq. (52), and remember­
ing that all the modes yield a positive contribution 
to the energy, it is evident that the a", (p, a) destroy 
particles of charge e8,. and the b,,(p, a) destroy 
particles of charge -e8",. 

We have already mentioned that all the solutions 
are composed of doublets, both members of which 
are characterized by the same mass and spin but 
by different eigenvalues (either +1 or -1) of 1'0714' 
This situation is analogous to the occurrence of both 
signs 'Yo'Y~ in the theory discussed in Sec. II. In that 
case, the natural interpretation was that every 
particle had its counterpart differing only in parity. 
A similar interpretation suggests itself here. Under 
space inversion, the field if; would then transform as 

P : if;(x, t) -> 'Y0714if;( -x, t). (57) 

It has been suggested that this theory describes 
the nucleons, the E particles, and the Nl~ pion­
nucleon resonances.6 This definition of the parity 
would suggest, that for everyone of these particles, 
there should exist another with the same mass and 
spin but with opposite parity. Since such counter­
parts apparently do not exist, we must conclude 
that half of the solutions are unaccounted for 
physically. 

Finally, let us emphasize that the theory discussed 
in this Section can be formulated in a manner 
analogous to Part B in Sec. II. It is thus possible 
to satisfy Eq. (2), retaining only half its solutions 
and adjusting arbitrarily the charges and parities 
of the retained particles to conform to the nucleons, 
the Z baryons, and the N 1~ resonances. 

IV. FIELD THEORY OF EQUATION (3) 

The field Eq. (3) follows from the Lagrangian 

.£ = -~({3"i-lap + ;rn;3)if; (58) 

with 

(59) 

and ~ the same as in Eq. (38). The energy-momen­
tum 4-vector is 

Pi = J dx~{3o f ajif;: (60) 

H = J dX~(~'f V + ;rn;a)if;:, (61) 

and the relativistic angular momentum tensor is 

J". = :J dx~{3o(X" t a. - x. t a" + PI" + !u".)if;:. X [a:(p, a)a+(p, a) - b~(p, a)b_Cp, a) 

- a~(p, a)a_(p, a) + b:(p, a)b+(p, a)]. (56) (62) 



                                                                                                                                    

QUANTUM FIELD THEORIES AND CORBEN EQUATIONS 987 

As in Sec. III, the spin matrices are given by Eq. 
(44), and the theory describes particles of spin! 
and J. 

In Eq. (3) a new feature appears. The coefficient 
of the time derivative is the singular matrix Po, 
and as a consequence, the solutions of this equation 
do not constitute a complete set. At each instant, 
the quantity «(.J.i-1V + mf.3)y1 must be orthogonal 
to the subspace belonging to the null eigenvalue 
of Po. That is, it must be an eigenstate of p~ cor~ 
responding to the eigenvalue +1. The anticommuta~ 
tion rules satisfied by if; and If; must be constructed 
to allow arbitrary variations of only those fields 
which satisfy this constraint. We therefore require 

{«(.J·i-tV + mf.3)if;(x), If;(y)Po}z.-•• 

= P~«(.J·i-lV + mf.a)O(x - y). (63) 

In analogy to our procedure in the two previous 
theories, we first look at the Fourier transform of 
Eq. (3) restricted to zero 3-momentum, 

mf.3if;(0, W) = WPoif;(O, W). (64) 

The solutions of Eq. (64) are distinguished by 
the repl'esentation of the PI' and by the eigenvalues 
of W, the spin and its orientation, and 'Yo114' There 
are no solutions in the 1 X 1 representation of 
the PI" 

In the 5 X 5 representation, there are solutions 
corresponding to four particles of spin ! and with 
mass ma = IWI given by 6 

W = ±m[(1 + b)(1 - 3b)/(1 - 2b)]\ (65) 

where b = molm. These solutions differ in the sign 
of Wand in the eigenvalue (either + 1 or -1) of 
'Yo114' In this representation of the PI" the solutions to 
Eq. (64) or Eq. (3) occupy only eight of the 20 
dimensions in the direct-product space of the PI' 
and 'Yw 

In the 10 X 10 representation of the fJl" 24 of 
the 40 dimensions are spanned by solutions of Eq. 
(3). Eight dimensions correspond to solutions with 
spin! and 16 with spin!. The eigenvalues of W 6 are 

W = ±m[(l + b)(l - 3b)(1 - 4b)/(1 - 2b)]i 

(spin !), (66) 

and 

W = ±m(l + 2b)1 (spin !). (67) 

Both signs of the eigenvalue of 'Yo114 occur in this 
case also. 

We denote the positive (or negative) W solutions 
of Eq. (40) by u±(a) [or v±(a)] where the ± sign 

indicates the eigenvalue of 'Yo114 and the symbol a 
denotes the other distinguishing features of the solu­
tions. The wavefunctions for arbitrary three momen­
tum can be constructed from these u±(a) and v±(a) 
in accordance with Eq. (47), and the field if; can 
be expanded in the form of Eq. (22). From the 
orthogonality rules discussed in the Appendix, 

u:(p, ahofJou_(p, a') = 0, u:(p, ahofJov",( -p, a') = 0 

v:(p, ahofJov-(p, a') = 0, u~(p, ahofJov±( -p, a') = 0 

and 

u:(p, ahofJou±(P, a') = ±2w",(P) 0",,,,. 

v:(p, ahofJov±(p, a') = =F2w.,(P)oaa" 

(68a) 

(68b) 

we obtain, by inverting the equivalent of Eq. (22), 

a±(p, a) = ± J dx e-iPZu:(p, ahofJoif;(x) (69a) 

b±(p, a) = T J dx if;\xhofJov±(p, a)e- ill
'
Z. (69b) 

From Eqs. (63), (68), and (69), and by integrating 
by parts and making use of the equations 

(fJ'P", + mf.3)u±(p, a) = 0, 

(-fJ·p", + mf.a)v±(p, a) = 0, (70) 

we obtain 

{a±(p, a), a:(p', a')} = {b'l'(p, a). b~(P', a')} 

= ±2wa(P)(211/0a",,0(p - p'). (71) 

All other combinations anticommute. Finally, Eq. 
(61) and the equivalent of Eq. (22) allow us to 
write the total energy as 

H-_l_L:J~ 
- (211)3 '" 2w",(P) 

X [a:(p, a)a+(p, a) + b~(p, a)b_(p, a) 

- a~(p, a)a_(p, a) - b:(p, a)b+(p, a)]wa(P). (72) 

Equations (71) and (72) are the same as Eqs. (51) 
and (52) in Sec. III. The need for reinterpretation 
of the t adjoint and the method for accomplishing 
this with the metric in Eq. (53) are applicable here 
exactly as in Sec. III. All the particles then give 
positive contributions to the energy in Eq. (72). 

The total baryonic current proposed for this 
theory is 

(73) 



                                                                                                                                    

988 R. E. NORTON 

and hence the baryon number B is 

(74) 

By substituting the equivalent of Eq. (22) into Eq. 
(74), and employing the relations (68), we obtain 

__ 1 "J~ 
B - (211")3 ~ 2w a(p) 

X [a:(p, a)a+(p, a) - b~(p, a)b_(p, a) 

- a~(p, a)a_(p, a) + b:(p, a)b+(p, a)]. (75) 

Comparison of Eq. (75) with Eq. (72) reveals that 
the particles destroyed by the a,. (p, a) carry positive 
baryonic number, whereas those destroyed by the 
b:(p, a) carry negative baryonic number. 

The electric current which has been suggested6 

for this theory is j~ = e :if'Y5{3~t/;:. Although it is 
conserved, this form is not a plausible candidate 
in the second quantized version for two reasons: 
(1) If, as seems most natural, the field t/;(x, t) ---? 

'YO'T/4t/;( -x, t) under parity, then this current is a 
pseudovector. Of course this definition of space 
inversion is not required; the theory discussed here 
could also be formulated in analogy with Sec. lB, 
and this apparent problem could then be avoided. 
However, (2), the "charge" Q = e :J dxif'Ys{3ot/;: is 
not diagonal in the one-particle states of this theory. 
The particles corresponding to the operators a±(P, a) 
and b±(p, a) would not carry definite amounts of 
charge, and this feature is of course physically 
inadmissible. 12 

It has been suggested that the theory of Eq. (3) 
describes the A, the y~ (1405 MeV, spin !), and 
the Yo~ (1520 MeV, spin i). Although the neutrality 
of all the particles was concluded from the above 
definition of the electric current, nothing stops us 
from retaining this conclusion but rejecting the 
current. 

Once the neutrality of all the particles is adopted, 
it becomes possible to assert that three of the six 
particles contained in the theory are those men­
tioned. The particles corresponding to the other 
solutions are identical to those in mass and spin, 
but apparently do not occur physically. 

12 We should note, however, that it is possible to re­
define the one-particle states as linear combmations of the 
two degenerate modes at each mass in such a way that the 
wavefunctions for the new states are eigenfunctions of 'Y&. 
Since the eigenvalues of 'Y& are :1::1, all the particles would 
then be electrically charged, and it would not be possible to 
associate this theory with only neutral particles as has been 
suggested. 

V. FIELD THEORY OF EQUATION (4) 

The Lagrangian density is 

.£ = - if({3~i-Io~ + :Jl't,)t/;, (76) 

with 

(77) 

and 

(78) 

The energy-momentum 4-vector takes the form 

P j = :/ dx1!{3o f o;1/!: (79) 

H = :/ dxif(~'f V + :Jl't3)1/!: (80) 

and 

J~. = I dxif{3o(x~ f o. - x. f 0" 

+ {3~. + (3~.)1/!:. (81) 

We note again that the matrix (30 is singular and 
that the solutions to Eq. (4) do not constitute a 
complete set. We can repeat here the arguments 
leading to Eq. (63), with the exception that since 
the spin is integral we postUlate commutation rules, 9 

[(~'i-lV + :Jl't4) t/;(X) , ~(y)(3o]ZO-YO 

= (3~(~. i-IV + :Jl't4) o(x - y). (82) 

The Fourier transform of Eq. (4), restricted to 
zero 3-momentum, is 

:Jl't,t/;(O, W) = W(301/!(O, W). (83) 

The solutions of Eq. (83) are distinguished by the 
representations of (3,. and {3~ and by the eigenvalues 
of W, of the spin, and of 'T/4'T/~ (either +1 or -1). 
All of these possibilities occur and have been tab­
ulated extensively in Refs. 4, 6, and 7. 

If the sign of the eigenvalue of 'T/4'T/~ is indicated 
explicitly, we can write the positive and negative W 
solutions of Eq. (83) as u±(a) and v±(a). We can 
then construct the wavefunctions for arbitrary 3-
momentum, 

u±(p, a) = exp [fii({3i4 + f3;4){ a(P) Ju:(a) (84a) 

v±(p, a) = exp [fi.«(3., + (3:4)9,,(p)]v±(a), (84b) 

where p and (Ja(P) have the same meaning as stated 
after Eq. (19). It follows that 

({3'Pa + :Jl't,)u:(p, a) = 0, 

(-{3'Pa + mc4)v±(P, a) = O. (85) 
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As discussed in the Appendix, the orthogonality 
relations are 

u:(p,ah~.aou_(p,(l) = 0, u:(p,ah~.aov%( -p,a') = 0, 

v:(p,ah~.8ov-(p,a') = 0, u~(p,ah~.8ov%( -p,a') = 0, 
(86a) 

and 

u:(p, ah~.aou%(p, a') = ±2w"(P)o"",, 
t (86b) 

v%(p, a)1]~.aov%(p, a') = =r2w"(p)O",, .. 

When the field 1/1 is decomposed in the form of 
Eq. (22), the relations (86) can be employed to obtain 

± J dx e-iP'xu:(p, ah~.ao1/l(x) (87a) 

b%(p, a) = =t= J dx 1/I\xh~.8ov%(p, a)e- iP 'X
, (87b) 

from which, making use also of Eqs. (82), (85), 
and (86), 

[a%(p, a), a:(p', a')] = [b%(p, a), b:(p', a')] 

= ±2w"(P)(211")30,,a'O(P - p'). (88) 

Finally, by substituting the equivalent of (22) into 
Eq. (80), the total energy can be written as 

H-_1_EJ~ 
- (211")3., 2w,,(P) 

X [a:(p, a)a+(p, a) + b:(p, a)b+(p, a) 

- a~(p, a)a_(p, a) - b~(p, a)b_(p, a)]w.,(p) , (89) 

We observe that Eqs. (88) and (89) are the same 
as Eqs. (25) and (26). The theories of Eqs. (1) 
and (4) should hence, formally, be quantized in the 
same manner. The discussion after Eq. (26) and the 
form of the metric in Eq. (28) apply to both theories. 

The electric current which has been proposed4
•
6

•
7 

for this theory is 

j~ = !e :~.ai1 + 1]~)1/1:. (90) 

All the u%(p, a) and v%(p, a) are eigenstates of 1]~ 
with the eigenvalue + 1 or -1, and for a given 
mass and spin, the four particles corresponding to 
positive and negative W solutions, and to the two 
signs of 1]41]~, all have the same sign of this eigen­
value. From Eq. (90), by decomposing the fields 
1/1 and ~ according to Eq. (22) and employing the 
orthogonality relations (86), we can write the charge 
Q as 

Q __ e E'J~ 
- (211")3 a 2w.,(P) 

X [a:(p, a)a+(p, a) - b:(p, a)b+(p, a) 

- a~(p, a)a_(p, a) + b~(p, a)b_(p, a)], (91) 

where the primed sum includes only those terms 
with the eigenvalue + 1 of 1]~. Comparing Eqs. (91) 
and (89), we see that of the particles included in 
the primed sum, those destroyed by the a%(p, a) 
have the charge e whereas those destroyed by the 
b%(p, a) carry charge -e. 

Table II of Ref. 7 displays the essential features 
of the particle spectrum arising from Eq. (4). It 
has been emphasized there that the two parameters 
m and mo can be adjusted to fit the masses and 
spins to those of a large number of the observed 
strangeness zero bosons. The multiplicity of the 
solutions, however, does not agree with experiment. 
The theory actually contains four particles for each 
mass and spin; two corresponding to both eigen­
values of 1]41]~, and another factor of 2 because of 
both positive- and negative-frequency solutions. 

The experimental situation requires that for 
charged particles there should be two degenerate 
solutions corresponding to both signs of the charge. 
The theory thus contains twice as many particles 
as are actually observed. For neutral particles no 
degeneracy is required, and hence there are four 
times as many solutions as can be accounted for 
physically. Exceptions to this latter conclusion, re­
ducing the factor of 4 to a factor of 2, occur in two 
cases when the solutions of this theory are related 
to the observed particles as in Ref. 7. There, the 
wand Po correspond to the two degenerate, positive­
frequency solutions which differ only in their eigen­
value of 1]41]~. The two negative-frequency solutions 
are hence the only two with this mass and spin 
which are unaccounted for physically. Similar re­
marks apply for the f and Bo resonances. 

Finally, let us note that if in analogy to the pre­
vious theories [see, for example, Eq. (32)], space 
inversion is given by 

P: 1/1 (x , t) ~ 1]41]~1/1( -x, t), (92) 

then the Po and w would have opposite parities, as 
would also the f and Bo. Since these conclusions 
are in contradiction to experiment (at least for the 
p and w) the definition of parity in Eq. (92) is 
incompatible with the interpretation of these solu­
tions in Ref. 7. 

VI. SUMMARY 

We have seen that the field theories which lead 
to Corben's equations of motion can be made phys­
ically consistent, but that the multiplicity of the 
solutions imply considerably more particles than 
have been observed. It is possible to adjust the 
parameters m and mo to fit the masses and spins 
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to experiment surprisingly well. On the other hand, 
the number of particles predicted at each such set 
of values does not agree with the experimental 
situation. 

Our viewpoint has been to take seriously the 
field theories which lead to Corben's equations of 
motion and to examine in detail the number and 
properties of the particles which result. Let us 
emphasize again that this is not the only possible 
approach. We could, for example, simply demand 
that the Corben equations be satisfied without re­
taining all the solutions. In Sec. lIB, we saw how 
this procedure could be formalized for the theory 
of Eq. (1). It is clear that similar methods could 
be applied to the other equations. We should keep 
in mind also, that in addition to the four equations 
discussed here, the Corben point of view actually 
suggests many more equations reflecting the fact 
that the term involving mo can couple together 
arbitrary spin matrices.13 If the theories correspond­
ing to these additional equations are studied, most 
of the solutions will describe particles of high spin 
(8 > 2) and with masses above the present experi­
mental observations. There will be some solutions, 
however, which refer to particles with spins and 
masses in the range considered in this paper. It seems 
likely that when these additional solutions are taken 
into account, a reinterpretation of the particles pre­
dicted by Eqs. (1)-(4) will be suggested, and it is 
possible that the multiplicity of the solutions existing 
then will suggest a simple, plausible scheme for 
ruling out those which do not fit in the observed 
particle spectrum. 
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APPENDIX 

In this Appendix we indicate the derivation of 
the orthogonality relations employed in Eqs. (23), 
(49), (68), and (86), which refer, respectively, to 
the theories of Eqs. (1)-(4). 

13 See, for example, L. Castell, University College (London) 
preprint. 

A. Equation (23) 

It follows from the definition of u,,(a) and v±(a) 
in Sec. II that 

'Yom"u,,(a) = mL1u±(a) , 'Yom"v±(a) 

'Y~m"u±(a) = ±mL1u±(a), 'Y~m"v±(a) 

-mLlv±(a) 

=FmL1v" (a) . 

(AI) 

If we apply the exponential operator in Eq. (19b) 
to the relations in (AI) we obtain after some algebra 

('Y'P" + mL1)u±(p, a) = 0, 

(-'Y'P" + mL1)v±(p, a) = 0, 

(±'Y' 'p" + mL1)u±(p, a) = 0, 

(=F'Yf 'Pa + mL1)v±(p, a) = O. 

(A2) 

To prove the orthogonality relation involving u: (p, a) 
and u_(p, a), consider 

u:(p, a)( _"(f.p + mL1)u_(p, a') 

= -w",(P)u:(p, ah~u_(p, a') 

= w,,(P)u:(P, ahbu_(p, a'), (A3) 

where both equalities arise from (A3); the first ex­
pression from applying (-,,('.p + mL1) to the right, 
and the lower expression form applying it to the 
left. Clearly, both equalities can only be valid if 
u:(p, ah~u_(p, at) = 0, which is the first of the 
relations in Eq. (23). The corresponding relation for 
the negative frequency solutions, v:(p, ah6v_(p, a') 
= 0, can be proved similarly. 

Equation (A2) can also easily be employed to 
prove the orthogonality relations involving u: (p, a) 
and v±( -p, a'). Consider 

u:(p, aho'Y~(,,('P + mL1)v±( -p, a') 

= -w",(P)u:(P, ah~v±( -p, a') 

= w,,(P)u:(p, ah~v±( -p, a'), (A4) 

where again the first equality arises from applying 
("(.p + mL1) to the right and the second from 
applying it to the left. It follows obviously that 
u:(p, ah~v,,( -p, a') = 0, which is another of the 
relations in Eq. (23a). The final orthogonality rela­
tion in Eq. (23a) can be proved similarly. 

To show that u1(p, ah u±(p, a') ex: 0", .. ', we 
consider 

u:(p, aho'Y6("('p + mL1)u±(p, a') 

= w",(P)u:(p, ah~u*(p, at) 

= w,,(P)u:(p, ahbu±(p, a'), (AS) 
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where again the upper and lower terms on the right 
come from acting with 'Y'P + mil) to the right 
or left, respectively. Except for the factor ±2w,,(p), 
the first version of Eq. (23b) follows from comparing 
the two forms of (AS). Thatv:(p, ah~v±(p, a') ex: ~"", 
can be shown analogously. 

Finally we must verify the ± signs appearing 
in Eq. (23b). Take, for example, 

u:(p, ah~u±(p, a) = u:(a) exp [!P,(O",4 + O"~.) 8,,(P)h~ 
X exp [!p,(O"i4 + 0"~.)8,,(p)lu±(a), (A6) 

where we have made use of Eq. (19). Taking into 
account the definition of 8,,(p) after Eq. (19), Eq. 
(A6) can be rewritten as 

u:(p, ah~u±(p, a) 

= u:(ah~[w,,(p) + O",4P,]m:1u±(a) 

= w,,(p)m:lu:(ah~u±(a) 

= ±w,,(p)m:2u:(a)milu±(a). (A7) 

The second version of (A7) follows from the first 
since {O" 14, 'Yo'Y~} = 0 and hence 0";4 does not connect 
two states belonging to the same eigenvalue of 'Yol'~. 
The third version follows from the second by (AI). 
The possibility of choosing the normalization of the 
u± (p, a) according to the ± sign in the first form 
of (23b) is now apparent since mil = m + tmoO" P.O"~, 
is a positive definite operator (for the values of m 
and mo actually employed). This positive definiteness 
can be easily proved (it is obviously true for small 
enough mo), but we do not discuss the proof here. 
It turns out that mil is positive unless mo is large 
enough to produce complex m" in Eq. (AI). 

B. Equation (49) 

To demonstrate the orthogonality relations in­
volving u+(p, a) and v±( -p, a') we make use of 
Eq. (48) to write 

u:(p, aho'14('Y'P + mi2)v±( -p, a') 

= -w",(P)u:(p, ah4v±( -p, a') 

= w,,(P)u:(P, ah4v±( -p, a'), (A8) 

where the first and second equalities arise from acting 
with ('Y'P + mi2) on the right and left, respectively. 
The desired relation follows immediately, and the 
corresponding expression involving u~(p, a) is proved 
in an identical manner. 

The proof of Eq. (49b) follows in complete analogy 
with that of Eq. (23b). Instead of (AS) we have 

u:(p, aho'1.('Y·P + mi2)u±(p, a') 

= w",(P)u:(p, ah.u±(p, a') 

which demonstrates that the left side of Eq. (49b) 
is proportional to ~""" To show that the u±(P, a) 
can be normalized according to Eq. (49b) , consider 

u:(p, ah.u±(p, a) = u:(a) exp [Pi(!0";.,8;4)8,,(p)1'1. 

X exp [Pi(!O"i. + ,8i4)8,,(p)]u±(a) (AlO) 

in analogy with (A6). If I'~ in Eq. (A7) is replaced 
by '1" the various versions of (A7) follow identically, 
and we obtain 

u:(p, a)'14U±(P, a) = ±w,,(p)m-;,2u
t
±(a)mi2u,.{a). (All) 

The positive definiteness of the operator mi2 (which 
can easily be proved) then implies our result. The 
corresponding expression involving v± (p, a) can be 
demonstrated similarly. 

Finally we must show that u: (p, ah.u_ (p, a) = 0, 
and also that v:(p, ah.v_(p, a) = O. We note that 
these relations are trivially true for all the solutions 
except for the pair corresponding to the proton and 
the pair corresponding to the N~; in Table I of 
Ref. 6, since the two members of every other pair 
occur in different representations of the ,8p. Consider 
the matrix element of '14 written in the form of (AlO). 
Since '1. anticommutes with ,8;4, this expression can 
be written as 

u:(p, ah.u_(p, a) 

= u:(ah.(w,,(p) + O"i4p.]m:lu_(a). (Al2) 

The term involving w,,(p) does not contribute, since 
it commutes with 'Yo'1. and hence doesn't connect 
eigenstates of 'Y0'1. belonging to different eigenvalues. 
Further, the '1. can be replaced by 'Yo [since '1! = 1 
and u:(a) = u:(aho'1.] to yield 

t 
u+(p, ah4u_(p, a) 

= p;m:lu:(ahoO"i.u_(a) 

= Pi(2m,,)-lu:(a) [1'0, O"i4]u_(a). (Al3) 

We now use the fact that the u±(a) are solutions 
of Eq. (46) with W = mer to rewrite (A13) as 

t 
u+(p, ah.u_(p, a) 

(Al4) 

If we define Ai == ,8i4, Ti == 0";4, and employ ~i 
defined in Eq. (43) to express 

ml2 = m + !moO"p.,8p. = m + mo(d'~ + ~'A), (AlS) 

we can make use of the commutation rules 

(A16) 
to rewrite (A14) as 

u:(p, ah.u_(p, a) = moPi(2m!)-'u:(a) 

= w,,(P)u:(p, ah.u±(p, a'), (A9) X ([d'~' Ti] + [~'A, T,]}u_(a). (A17) 
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From (AI6) we can readily verify that 

['I:'A, T,] = -[d'l:, Ai]. 

Therefore, 

u:(p, a)7]4u_(p, a) = mop.(2m!)-lu:(a) 

X [d·l:, (T. - Ai)]u_(a). (A18) 

Now it turns out by explicitly looking at the solu­
tions of Eq. (46), that for the two pairs of solutions 
for which the left side of (AI8) is not trivially zero 
(the pairs for the proton and for the N~; in Table I 
of Ref. 6), the solutions are also eigenstates of the 
operator d·l:. The commutator in (AI8) does not 
therefore contribute to the matrix element. 

C. Equation (68) 

The orthogonality relations involving the u",(p, a) 
and the v"'( -p, a) are proved easily as in the two 
previous cases. We observe, for example that 

u:(p, aho114(~'P + ml.a)V", ( -p, a') 

= -w .. ,(P)u:(P, aho{3ov±( -p, a') 

= w .. (P)u:(p, aho{3ov±( -p, a'), (AI 9) 

where again the first and second forms on the right 
follow from acting with (~.p + ml.a) on the v'" and 
on the u+, respectively. As before, the desired orthog­
onality relation is proved by equating the two 
equivalent forms of (AI9). 

To prove that u:(p, aho{3ou±(P, a), or the cor­
responding expressions involving v±(p, a), is propor­
tional to 0 .... " merely repeat the discussion of (A9) 
but with (y.p + ml.2 ) replaced by (~.p + ml.a). 

The proof that the ± signs in Eq. (68b) can be 
chosen as shown is also similar to our procedure in 
the two previous cases. Since 7J4{30 = (3o, we can write 

u:(p, aho{3ou",(p, a) 

= u:(aho114 exp [-P.(tO"4 + (3(4) 8 a(P) ]{3o 

X exp lP,(tO'i4 + (3(4)8 .. (P)]u",(P, a), (A20) 

where we have used the fact that 'Yo7]. anticommutes 
with both 0',. and {3i4' Evaluating the product of 
(3o and the two exponentials in (A20), and replacing 
'Yo7J. by its eigenvalues ±l, we obtain 

u:(p, aho{3ou",(P, a) 

= ±w~l(p)u:(a)[~.p + (3owa(P)]u",(a). (A21) 

Only the second term on the right-hand side con­
tributes, since (3. anticommutes with 'Yo7J. and there­
fore can't connect two eigenstates of this operator 
belonging to the same eigenvalue. The second term 

can be rewritten by realizing that u",(a) is a solution 
of Eq. (64) with W = ma' We obtain 

u:(p, aho{3ou±(P, a) = ±m~lu:(a)ml.aU",(a), (A22) 

and the positive definiteness of ml.3 (which we again 
do not prove in detail) assures us that the choice 
of signs in the first form of Eq. (68b) is correct. 
The second form can be verified similarly. 

Finally, we must prove the orthogonality relation 
involving the u+(p, a) and u_(P, a). Equation (A2I) 
also is valid if the ± sign on one of the u±(a) are 
reversed. In that case only the first term on the 
right of (A21) contributes (since ['Y07]4, (3o] = 0), 
and we have 

u:(p, aho{3ou,,(P, a) = ±u:(a){3iu,,(a)p.w~I(P). (A23) 

We have not been able to find a simple proof that 
the right-hand side of (A22) vanishes. We have, 
however, verified that it is zero by calculating 
straightforwardly with the solutions to Eq. (64). 

D. Equation (86) 

We prove first the orthogonality relations involv­
ing the u",(p, a) and the v"'( -p, a). We note 

u:(p, a)7].7]~(~·P + ml.4)v±( -p, a') 

= -wa·(p)u:(p, a)7J~ov±( -p, a') 

= wa(P)u:(p, a)7]~{3ov",( -p, a'), (A24) 

where, as before, the first term results from acting 
with (~.p + ml..) to the right, and the second from 
acting with this operator to the left. Clearly, both 
forms are compatible only if u:(p, a)7]~{3ov",( -p, a') 
= O. It is also clear that a similar relation holds 
with u+ replaced by u_. 

The proof of Eq. (86b) is essentially identical to 
our previous procedures. In (A9) replace 'Yo by 7]., 
y.p by ~.p, and ml.2 by ml.4 • We then have imme­
diately that the left sides of (86b) are proportional 
to oaa" The ± signs in (86b) are also verified as 
before. If we replace in (A20) , (A21), and (A22) 
'Yo by 11~, to'i4 by (3~., and ml.a by ml.., the signs in 
(86b) follow as a result of the positive definiteness 
of ml. •. 

The proof of the orthogonality relations involving 
u+(p, a) and u_(p, a) proceeds as in the previous 
case, i.e., Eq. (68). We can readily obtain that 

u±(p, a)7]~{3ou,,(p, a) = ±u:(a){3.u,,(a)p.. (A25) 

Again, we have not been able to construct a simple 
proof that the right side of (A25) is zero, but that 
this is indeed true can be verified by looking directly 
at the solutions of Eq. (83). 
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Momentum Transfer Cross-Section Theorem * 
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The momentum transfer cross section is expressed in terms of a matrix element of grad V, where 
V is the potential which need not be spherically symmetric. The result may be useful for estimating 
the momentum transfer cross section in circumstances where the usual expansion in partial waves is 
inconvenient or inapplicable as, e.g., when V is noncentral. 

FIRST, I consider the scattering of a particle by 
a potential, with real Hamiltonian 

The solution is 

(1) where cI> is everywhere outgoing at infinity 

It is well known that the scattering solutions 1/1 to 

(H - E)I/I = 0 (2) 

obey a cross-section theorem 

(T = f dn' JA(n ~ n')J2 = ~'Ir 1m A(n ~ n), (3) 

where (T is the total cross section, and A (n ~ n') 
is the amplitude for scattering from initial direction 
n to final direction n'. The significance of the cross­
section theorem is that the total cross section, which 
is the integral of the differential scattering cross 
section over all angles, can be re-expressed in terms 
of a single matrix element only, linear rather than 
quadratic in the interaction V. It is my objective 
to derive a similar result for the so-called momentum 
transfer cross section 

(Td = f dn' (I-non') IA(n~n')12. (4) 

From (2) 

- J dr (HI/I)*pl/l + J dr l/I*pHI/I = 0, (5) 

lim cI> = A(n ~ n')eiA'r-1 
0 

"~CDUn' 

Substituting (7) into (6), 

_/i
2 J dr {-ikn.r~2 a<1> a<1> ~2 -ikn'r 

2m e v iJz - iJz v e 

+ <1>*\7 2 .i eikn .r _ (.i eikn .r)\72<1>* 
iJz iJz 

+ <1>*\72 a<1> _ iJ<1> \72<1>*} 
iJz iJz 

+ J dr 1/1* ~: 1/1 = 0, 

or 

_/i
2 J dS { -ikn.rv a<1> a<1> V -.kn·r 

2m 0 e iJz - iJz e 

+ cI>*V .i e·knor _ (.i e·kn.r)vcI>* 
iJz iJz 

+ <1>"'V acI> _ iJcI> VcI>*} 
az iJz 

+ J dr 1/1* ~: 1/1 = 0, 

(7) 

(8) 

(9) 

(10) 

where p is any component of momentum, the z­
component say i to keep the integrals in (5) con­
vergent, the integration volume may be supposed 
to equal the interior of a sphere of finite though 
very large radius. Using (1), Eq. (5) becomes 

where the integration volume in (10) can be extended 
to infinite r. 

_h
2 J dr [1/1*\1 2 iJI/I - (\1 2 1/1*) iJI/I] 

2m az iJz 

J iJV + dr 1/1* - 1/1 = o. 
az 

(6) 

* This research was supported by the Advanced Research 
Projects Agency (Project Defender), and was monitored by 
the U. S. Army Research Office-Durham, under Contract 
DA-31-124-ARO-D-139. 

t Permanent address: Department of Physics, University 
of Pittsburgh, Pittsburgh, Pennsylvania. 

Now I specifically choose n along the positive 
z-direction. Also in (10) 

.i = ar .i + iJO ~ = cos o.i _ sin 0 ~ (11) 
iJz iJz iJr iJz iJO ar r iJO' 

where dS = r2dn', and non' = cos o. Moreover, 
it can be shown 1 that 

1. ikn·r 27ri [~(, + ') e- ik
, 1m e = - u,n n--

,-"'Un' k r 
eikrJ 

- B(n - n') --;:- . (12) 

1 E. Gerjuoy and D. S. Saxon, Phys. Rev. 94, 1445 (1954). 
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With the asymptotic forms (8) and (12), it is 
evident that the last term on the right side of (11), 
being of higher order in Ijr, makes a negligible 
contribution to (10). Thus, in (10) we can replace 
ajaz by (non')ajar. 

Substituting now Eqs. (8) and (12) in (10), there 
results 

_h
2 J 2m dn'(non') [ - 47riko(n - n')A(n ~ n') 

+ 47riko(n - n')A *(n ~ n') 

- 2k2 IA(n ~ n') 12] + J dr 1/;* ~~ 1/; = 0, (13a) 

or 

J dn'(non') IA(n ~ n') 12 = ~11" 1m A(n ~ n) 

1 J aV - 2E dr 1/;* a; 1/;. (I3b) 

In the event there is any question about employment 
of (12), as well as dropping the last term in (11), 
which seems to imply 

I note that with somewhat more effort (I3a) can 
be derived from (10) without direct recourse to (12). 
The reason use of (14) introduces no contradiction is, 
of course, the presence of the o-functions in (12), 
which effectively make cos2 

() = 1. 
Using (3) and (4), Eq. (I3b) implies 

-~ J d .1,* a v .1, 
Ud - 2E r 'I' az '1" 

(15) 

Equation (15) is the desired result. For spherically 
symmetric potentials, it is known2 that 

Ud = i: ~ (l + 1) sin
2 

(01 - 01+1)' (16) 

A direct derivation of (16) from (15), avoiding the 
forgoing surface integration over the sphere at 
infinity, is given in the Appendix. 

At low energies, where beam techniques tend to 
be impractical, it is Ud-not u-which experiments 
typically measure.3 Although at very low energies 
one expects the differential cross section to be 
spherically symmetric, implying Ud = u, nevertheless 

2 D. R. Bates, Atomic and Molecular Processes (Academic 
Press Inc., New York, 1962), p. 645. 

3 H. S. W. Massey and E. H. S. Burhop, Electronic and 
Ionic Impact Phenomena (Oxford University Press, New York, 
1952), pp. 366 iI. 

there are data suggesting many cross sections, e.g., 
electron-atom scattering cross sections,4 may be non­
spherically symmetric down to quite low energies. 
Thus, it becomes questionable whether one assuredly 
can compare low-energy measurements of Ud with 
theoretical estimates of u. In fact very recent elec­
tron-atom collision data at quite low energies5 in­
dicate Ud does not wholly agree with effective range 
theories6 of u. 

The significance of (15) is that, with recent de­
velopments of variational techniques7 applicable to 
matrix elements of the form (15) involving con­
tinuum eigenfunctions, it may be possible to make 
accurate estimates of Ud directly from (15), rather 
than from (4). In this way we should be able to 
sidestep the conventional means of evaluating (4), 
namely, via (16) from the phase shifts for the in­
dividual partial waves; it is just this procedure 
which is likely to fail when the actual angular dis­
tribution persists in asymmetry down to very low 
energies. To put it differently, Equation (15) offers 
the possibility of developing an "effective range 
theory" directly for the momentum transfer cross 
section which under appropriate circumstances, e.g" 
when av jaz is very large, may be appreciably 
different from the effective range expansion for u, 
even at quite low energies. Equation (15) will be 
particularly useful if the interaction is noncentral, 
as it can be in electron scattering from atoms or 
molecules. 

It is doubtless possible to generalize (15) to more 
complicated collisions, including the effects of par­
ticle spin, particle interchange and (when they can 
occur) inelastic collisions. However, these complica­
tions customarily are neglected in effect at the 
essentially thermal energies where Ud actually is 
measured. The main approximation is to suppose 
the scattering can be expressed in terms of a set 
of amplitudes (e.g., singlet and triplet amplitudes) 
each of which can be thought to represent scattering 
by an effectively one-particle Hamiltonian of form 
(1). If this approximation is not justified, the con­
ventional effective-range theories of U require gen­
eralization no less than Eq. (15). 

I remark that this momentum transfer cross sec­
tion theorem is related to the so-called hypervirial 
theorems8 which recently have excited some interest. 

4 Reference 3, Chaps. 2 and 3, especially p. 125. 
• L. S. Frost and A. V. Phelps, Phys. Rev. 136, A1538 

(1964). 
6 T. F. O'Malley, Phys. Rev. 130, 1020 (1963). 
7 L. M. Delves, Nucl. Phys. 45, 313 (1963). 
8 J. O. Hirschfelder, J. Chern. Phys. 33, 1462 (1960); P. D. 

Robinson and J. O. Hirschfelder, Phys. Rev. 129, 1391 (1963); 
M. B. McElroy and J. O. Hirschfelder, ibid. 131, 1589 (1963). 
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APPENDIX 

To further confirm the correctness of (15), I shall 
derive (16) directly from (15), using essentially only 
the properties of the radial eigenfunctions. As will 
be seen, the derivation is less trivial than might 
have been expected. The difficulty stems from the 
fact that (15) involves a matrix element of grad V, 
whereas customary expressions for scattering ampli­
tudes or scattering phase shifts involve matrix ele­
ments of V. 

For spherically symmetric V the solution (7) has 
the expansion 

(17) 

where 

[::2 + ~ :r - l(l;t 1) JRt = ~~ (V - E)R l (18) 

and 

lim RI = r- I sin (kr - tl1r + 0/) :; r- I sin 1]1' (19) 
r_'" 

Substitute (17) in (15), and make use oUW /Bz = 
cos 0 av jar, as well as 

1"" . 2l 
I) dO sm 8 cos OPIPl , = (2l _ 1)(21 + 1) 01'.1-1 

2(1 + 1) 
+ (21 + 1)(21 + 3) 01' .l+l' (20) 

It then follows that 

1 J av 2ri 1'" 2 dV 2E dr 1/;* a; 1ft = Ee 0 dr r a;;:-

X {i; (l + 1) {exp [i(OI+l - ol)JlRzRl+l 

- f 1 {exp [i(OI-l - ol)JlRIRz-l}' 
I-I 

(21) 

I now shall demonstrate that the rather remark. 
able relation (23) indeed holds. I first claim that 

_ (I + 1)(1 + 2»)(!l.. - !:.)Rz] 
r2 dr r 

_ !f.. [(d
2

Rl+l + ~ dR 1+1 

2m dr2 r dr 

_ (1 + 1)([ + 2) R ) (dRI _ lRI)] (24) 
r2 1+1 dr r . 

Equation (24) is most easily proved noting the 
identities 

[!l.. + (l + 2)J[!l.. - !:.J 
dr r dr r 

_ ~ + ~ !l.. _ lel + 1) 
- dr2 r dr r2' 

(25) 

[!l.. _ !:.][!l.. + (l + 2)J 
dr rdr r 

Using (25), the first term on the right side of (24) is 

(26) 

Thus using (18), the entire right side of (24) is 

;,,2 [(d l) 2m J 
2m Rl+l dr -;: IT (V - E)R I 

Replacing 1 by 1 + 1 in the last term of (21), so which reduces to the left side of (24), 
Having established (24), define 

that the sum runs from 0 to <XI, Eq. (21) simplifies to 
Ul = (djdr - 1jr)RI (27) 

so that 

'" 
X E (I + 1)R zR z+1 sin (01 - 01+1)' 

/-0 
(22) 

{'" 2 dV liZ 1'" 2 10 dr r R,R I +1 a;;:- = 2m 0 dr r 

Equation (22) will imply (16) if X {R [(d2 + ~!l.. _ (l + 1)(1 + 2») J 
1+1 dr2 r dr r2 Ul 

(23) - [(~ +~!l.. _ (1 + 1)(1 + 2»)R J} 
UI drz r dr r2 1+1' (28) 
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Consequently, integrating by parts the terms in­
volving derivatives of Uz, 

1'" 2 dV 
o dr r R IRI +1 dr 

= ~ [ 2(R dUI _ dRI+l)JI'" 
2 r 1+1 d UI d . m r r 0 

(29) 

Even in the worst l = 0 case, there is no contribution 
to the right side of (29) at r = 0, where RI '" rl, 

JOURNAL OF MATHEMATICAL PHYSICS 

UI '" rH. Using (19), one sees that 

1· 2(R dUI dRl+l) lmr 1+1 -d - UI-d-
T_CO r r 

-k2[sin '1/1+1 sin '1/1 + cos '1/1+1 cos'1zl 

-e cos ('1/1 - '1/1+1). (30) 

Substituting for 'Ill in terms of ~I' Eqs. (29) and (30) 
now immediately yield (23). 
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It is shown that Beg's elegant formulation of the peratization result of Feinberg and Pais can be 
rigorously justified. 

I. INTRODUCTION 

RECENTLY Begl has given a very elegant deriv­
ation of the main result of the peratization 

theory of Feinberg and Pais.2 However, Beg's 
method involves a certain amount of juggling with 
divergent series, and also the introduction of a 
regulator mass which is allowed to go to infinity 
after the completion of the manipulations. 

We show in the following that Beg's result (with 
a minor qualification) is rigorously correct and can 
be obtained without the use of a regulator. 

II. MAIN RESULT OF PERTIZATION THEORY 
AND BEG'S METHOD 

Consider leptons interacting via the exchange of 
a massive, charged vector boson, with leading order 
matrix element (Born approximation) given by 

Bp,(p) = [-il/(p2 + m2)](gp. + p!,p,/m2). (1) 

Here p is the 4-momentum transfer, m the boson 
mass, and g the boson-lepton coupling constant, and 
the metric is p2 = p2 - p~. The indices /J., pare 
to be contracted with the usual V -A lepton currents. 

Feinberg and Pais2 have shown that it is possible 
to give a meaning to the sum of the uncrossed ladder 
graphs in this theory, with the result that the leading 
order matrix element becomes modified or peratized to 

P _ -~g P!'P.!:fL • 2 ( ). 2 

B!'.(P) - p2 + m2 gP' + m2 + 4m2 gw (2) 

For simplicity we shall pretend in what follows that 
we are dealing with neutral vector bosons and that 
the leptons are massless. The relationship between 
this and the realistic situation is discussed in detail 
in Beg's paper.1 

Following Beg we write, for the scattering 
amplitude, 

Tp. = Tagpp + Tb[!p2gp. - P!'P.]. (3) 

From (1) the scalar functions T a, Tb have Born 
approximations given by 

_ 3 il iL 
Ba(P) - -4" p2 + m2 - 4m2 (4) 

and 

* This work was performed under the auspices of the They satisfy the integral equations 
U. S. Atomic Energy Commission. 

1 M. A. B. Beg, Ann. Phys. (N.Y.) 27, 183 (1964). 16 J 1 
2 G. Feinberg and A. Pais, Phys. Rev. 131, 2724 (1963), T (P2) B (P' B (p q) T (q2) ct (5) 

and Phys. Rev. 133, B 477 (1964). a = a J - (211")4 a - q2 a q 
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* This work was performed under the auspices of the They satisfy the integral equations 
U. S. Atomic Energy Commission. 

1 M. A. B. Beg, Ann. Phys. (N.Y.) 27, 183 (1964). 16 J 1 
2 G. Feinberg and A. Pais, Phys. Rev. 131, 2724 (1963), T (P2) B (P' B (p q) T (q2) ct (5) 

and Phys. Rev. 133, B 477 (1964). a = a J - (211")4 a - q2 a q 
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and 

T6(P2) = B6(P) + 3(2~4p4 J B6(P - q) 

X [3p· - p2l- 6p2q.p + 4(p·q)2)Tb (q2) ,rq. (6) 

In Eqs. (5) and (6) we have further specialized 
to the situation in which the leptons are scattering 
at zero energy. The final momenta are zero, and 
the initial momenta, p and -p, are of course off 
the mass shell. They are to be put onto the mass 
shell after the equations are solved. 

In this situation the on-shell amplitude is de­
termined entirely by Ta(O) (see Footnote 4 of Ref. 1), 
and we see that we will recover the result of Feinberg 
and Pais (Eq. (2») if we can show that to leading 
order in g2 Eq. (5) has the solution 

(7) 

where 

3 i 2 iL 
B~(P) = -4 p2 -f! m2 == Bo(P) + 4m2' (8) 

Let us write Eq. (5) symbolically as 

Ta = Ba + BoGTa. (9) 

Consider now the continuous family of integral 
equations 

T(e) = <B + e + [<B + eJGT(e), (to) 

where c is an arbitrary constant and CB is a Born 
term such that 

(11) 

It is clear that Eq. (9) is precisely of this form, with 

<B(p) = _!ig2/(P2 + m2
) = B~(P) (12) 

and 

e = -ig2/4m2
• 

Beg's derivation of the peratization result hinges 
on the following remarkable result derived by him: 
There exists a single function 

T (j,(P2) == T(p2; e = 0), (13) 

which is independent of e and which satisfies Eqs. 
(to) for all values of c. Moreover T (j,(P2) is given 
by the iterative solution of Eq. (10) with c = O. 

Once this result is accepted we immediately get 
the peratized result [Eqs. (7) and (8)J by writing 
Eq. (9) in the form of Eq. (10), with <B(p) given 
by Eq. (12), i.e., in leading order we have 

To(P2) == T (j,(P2) ~ CB(P) == B~(P). (14) 

In Beg's work, the above-mentioned result is 
derived with the use of a regulator by invoking the 
self-damping properties of the Fermi interaction in 
the chain approximation. 

We shall see in the next section that this result 
can be obtained directly in a very simple manner 
and without need of a regulator. However, it will 
turn out that the validity of the result depends upon 
the sign of CB(P) as p2 ~ ct:J, and that the sign 
in Eq. (12) is "good" in this sense. In this respect 
the result reached in Ref. 1 is not quite correct, 

f . f th ". 1" since there the proo was gIven or e smgu ar 
part of To, called T., whose <B(P) term has the 
opposite sign to that in Eq. (12). . 

It is thus interesting to note that the result IS 

valid only when <B(p) corresponds to a potential 
which is repulsive at small distances. 

m. SOLUTION OF INTEGRAL EQUATION 
FOR T(c) 

We shall solve Eq. (10) only for the case of direct 
interest, in which <B(p) is given by Eq. (12). Writing 
out the equation in detail we have 

2. 3 ig 2 
_ ~ 

T(P ,e) = -4 p2 + m2 + 0 (211)4 

J [ 3 il ] T(q2; e) d4q 
X C - 4 q2 + m2 l . (15) 

If a solution exists to Eq. (15) then a fortiori 
the integral 

J [ 3 il ] T(q2; c) d4 

c - 4 q2 + m2 l q 

converges, and since the terms in parenthesis cannot 
possibly cancel against each other, we see that the 
integral 

also converges. 
We can now rewrite Eq. (15) as 

3 i 2 16 J [3 ig' ] 
T(P2; c) = -4 p2 -: m2 - (211)4 -4 q2 + m2 

X Ti,q2; c) d4 + _ 1& J T(q2; c) d4q (16) 
q2 q C (211/ q2 . 

The function T(p2; c = 0), which is the solution 
of (15) when e = 0, will now satisfy (15) for all e 
provided only that 

160 J T(q2; c = 0) d4 - 0 
c - (~)4 q2 q - • 
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i.e., provided that 

_1_ J T(l; c = 0) d 4 _.1. 
(211"t q2 q - 16 (17) 

The condition (17) takes on a less formidable 
aspect if we look at it in coordinate space. 

Defining 

n( ) __ 1_ J -iq'z T(q2; c = 0) d4 
"'-' X - (2)4 e 2' q, 

11" q - u 
(18) 

we see that condition (17) is nothing more than 
the boundary condition 

so that Eq. (22) becomes 

(dd
2

2 + ~ dd )£(TJ) = 3g:m K 1(mTJ) [£(TJ) - -hl. 
1'/ 1'/ TJ 11"1'/ 

(23) 

As a result of the analyticity properties of (23) we 
can ignore the contour integral in the reduction 
formula and we may thus further restrict ourselves 
to 1'/ real and positive. 

Secondly we see that for 1'/ real and positive the 
solutions of (23) have the behavior 

£(T}) ~ l6 + T}A~, (24) 
,,-.0 

£(0) = l6' (19) where 

We must not examine the Fourier transform of 
Eq. (15) and show that it possesses a solution with 

(25) 

the required properties. and 
By taking the Fourier transform of Eq. (15) we 

get that £(x) satisfies the differential equation 
(26) 

02£(X) = -!ig2~F(x)[16£(x) - 1], (20) where 

where ~F(X) is the usual Feynman propagator 
function 

1 J e- iq
•• 4 

~F(X) = (2 )4 2 + 2 . d q. 
11" q m-7,E 

(21) 

Introducing the complex variable TJ defined by 
7]2 = X2, we can reduce Eq. (20) to 

(:;2 + ; d~)£(1/) = -!ig2~F(1/)[16£(1/) - 1]. (22) 

This equation is of the type studied by Pwu and 
WU,3 so we may take over their results directly. 
For convenience we outline here the essential steps. 

Firstly the Feinberg-Pais reduction formula2 for 
taking Fourier transforms allows us to consider 
Eq. (22), restricting 1/ to lie only in the first quadrant 
of the complex TJ plane. We may then replace 
~F(1/) by 

3 Y. Pwu and T. T. Wu, Phys. Rev. 133, B 778 (1964). 

IJ. = 0 or -2. (27) 

Finally, it can be shown that an iterative solution 
exists provided that 

3l/1I"2 < 1, (28) 

and which has the behavior given by taking A+ in 
Eq. (24) and IJ. = -2 in Eq. (26). 

Since A+ > 0, the condition (19) is satisfied. 
Since JI. = -2, the Fourier transform T(p2; c = 0) 

exists. 
This completes the proof of Beg's assertion and 

justifies his method of obtaining the Feinberg-Pais 
peratization result. 
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Disconnected groups are investigated to see whether they can be used as higher symmetry groups. 
Some disconnected groups are given which satisfy certain minimal physical conditions. Two discon­
nected groups are analyzed in detail using little group techniques, and it is shown how a doubling of 
certain multiplets results, so that particles and their antiparticles are in the same multiplets-rather 
than being in separate, though equivalent multiplets as in the usual SU2 or SUa schemes. 

SINCE SUa1 has thus far been the most successful 
group in classifying the strongly interacting 

particles, it is of some interest to list the assumptions 
which lead to SUa and to see whether new classes 
of groups become available when some of these 
assumptions are relaxed. 

Denote by G a group which is to be used as a 
"higher symmetry" group. Roughly speaking there 
are three "physical" assumptions and two "math­
ematical" assumptions which, when imposed on G, 
lead to SUa (or SUa/C, where C is the center of 
SUa). They are: 

(1) SU2 is a subgroup of G; 
(2) G allows the assignment of two additive quan­

tum numbers; 
(3) G has an eight-dimensional irreducible rep-

resen ta tion ; 
(4) G is a connected Lie group; 
(5) Gis semisimple. 

Assumption 1 means that the strong interactions 
are charge independent. One may question Assump­
tion 2, for it is well known that it is possible to 
assign three additive quantum numbers to strongly 
interacting particles, Ta, the third component of 
isospin, Y, the hypercharge, and B, baryon number, 
rather than just two, Ta and Y, as implicitly assumed 
in Assumption 2. If G is a connected Lie group, 
Assumption 2 means G is of rank 2.2 If G were a 
connected Lie group of rank 3, its supermultiplets 
would have different values of B. For example, in 
such a group there would exist a supermultiplet 
in which baryons and antibaryons were placed with 
other particles or resonances which had zero baryon 

* Supported in part by the National Science Foundation. 
1 M. Gell-Mann, "The Eightfold Way," CTSL-20 (1961); 

Phys. Rev. 125, 1067 (1962); Y. Ne'eman, Nucl. Phys. 26, 
222 (1961). 

2 R. E. Behrends, J. Dreitlein, C. Fronsdal, and B. W. 
Lee, Rev. Mod. Phys. 34, 1 (1962). 

number, while still having the same space-time char­
acteristics as the baryons and antibaryons-and such 
particles have not been observed. Millerd3 has in­
vestigated rank-3 groups in some detail and con­
cludes that it seems impossible to use them as a 
"higher symmetry" group because none of them 
seems to have the correct supermultiplet structure. 
Another argument against rank-3 groups is that if 
quarks4 do not exist, then, as Fairbairn5 has shown, 
there exist only rank-4 groups which contain SUa/C 
as a subgroup. It will be shown in Sec. III that 
disconnected groups exist which do not have these 
difficulties and therefore may be suitable groups for 
incorporating baryon number. 

The prejudice of eight-dimensional irreducible 
representations in Assumption 3 serves to eliminate 
the connected rank-2 Lie groups C2 (B 2 ) and G~ 
which thus far do not seem to have alternative 
representations in which to fit the baryons and 
pseudoscalar mesons. Assumption 5 is needed be­
cause all rank-2 connected Lie groups having in­
variant Abelian subgroups have not been classified. 

The purpose of this paper is to relax Assumption 
4-a requirement of mathematical convenience-and 
see whether disconnected groups are possible can­
didates for "higher symmetry" groups. In Sec. I 
a general outline of the properties of disconnected 
groups will be given, including a discussion of how 
observables appear. In Sec. II, several groups satis­
fying Assumptions 1 and 2 (or an assumption 2': 
G allows the assignment of three additive quantum 
numbers) will be given. Finally in Sec. III two 
particular disconnected groups, which incorporate 
baryon number, will be analyzed in detail, and in 
particular their irreducible representations will be 
given. 

a W. Millerd (private communication). 
'M. Gell-Mann, Phys. Letters, 8, 214 (1964). 
Ii W. Fairbairn (private communication). 
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L DISCUSSION OF DISCONNECTED GROUPS 

In this paper, the letter "D" will designate a 
disconnected group, where by disconnected group 
is meant any group in which it is impossible to pass 
continuously from the identity element to every 
other element of the group. The infinite dihedral 
group, D oo , the group generated by rotations about 
the z axis in a real three-dimensional space plus a 
discrete 1800 rotation about the y axis forms a 
disconnected group, as does the group Go of Lee 
and Yang.6 

In both of these disconnected groups there exist 
subgroups which are connected Lie groups. These 
subgroups are the set of elements which can be 
reached continuously from the identity. It can be 
shown7 that such a subgroup, called the component 
of the identity, always forms an invariant subgroup 
of the disconnected group. In the case of D", the 
invariant subgroup is the group of rotations about 
the z axis. The quotient groups of both DOG and Go 
are of order 2; disconnected groups which have 
quotient groups of order greater than 2 are the 
disconnected subgroups of SUa, called .1(3 002

) and 
.1(6 002).8 

The fact that the component of the identity forms 
an invariant subgroup of a disconnected group means 
that if the irreducible representations of the compo­
nent of the identity are known, the irreducible rep­
resentations of the disconnected group can always 
be found by using the techniques of little groups.9 

All the disconnected groups considered in this paper 
have, as components of the identity, Lie groups 
whose irreducible representations are known. 

One of the reasons that connected Lie groups have 
been used as higher symmetry groups is that a power­
ful mathematical theory exists2 which generates all 
possible semisimple connected Lie groups. No such 
comparable theory exists for generating disconnected 
groups. If the connected Lie group which forms the 
invariant subgroup of D is denoted by L, then D/L 
is isomorphic to a finite group. Since there are an 
enormous number of finite groups, it would seem 
to be a hopeless task to classify the disconnected 
groups. However, if certain physical requirements 
are imposed on the disconnected groups, the number 
of admissible groups is sharply reduced. For example, 
in the disconnected groups considered in this paper 

6 T. D. Lee and C. N. Yang, Phys. Rev. 122,.1954 (1961). 
7 L. S. Pontriagin, Topological Groups (Prmceton Uru­

versity Press, Princeton, New Jersey, 1939)'Kl'nk J M h 
S W. Fairbairn, T. Fulton, and W. H. 1 , • at. 

Phys. 5, 1478 (1964). . 
9 J. S. Lomont, Applications of Finite Groups (AcademIC 

Press Inc., New York, 1959), Chap. V. 

it will always be possible to assign two (Ta and Y) 
or three (Ta, Y, and B) additive quantum numbers. 
If Assumptions 1 and 3 above are also imposed, 
only a small number of disconnected groups remain. 
Several disconnected groups satisfying the above re­
quirements are given in Sec. II. 

It is possible to label the elements of a disconnected 
group D by 

D(alt a2, as ... an, m) = D(a, m), (1) 

where the a, are parameters which vary continuously 
between zero and 2'/1", and m is a discrete parameter 
which labels the various disconnected parts of the 
group-and therefore takes on as many different 
values as the order of the finite group D/L. The 
invariant subgroup of D is D(a, 1). 

To obtain observables from disconnected groups, 
it is necessary to pick a complete set of commuting 
elements of the group. The most natural choice of 
a complete set of commuting observables is obtained 
by considering elements in the component of the 
identity, D(a, 1). Since this subgroup forms a con­
nected Lie group, it is possible to consider its Lie 
algebra and obtain the observables from a complete 
set of commuting elements of the Lie algebra. How­
ever in contrast to connected Lie groups, it may , 
be possible to adjoin to these observables, observ­
abIes coming from the disconnected parts of the 
group. It is always possible to write elements of 
the disconnected parts of the group as 

D(a, m) = D(a, l)D(O, m). (2) 

It is not difficult to show that only elements of the 
type D(O, m) would give rise to new observables. 
Such elements would have the property that the 
additive quantum numbers arising from them would 
be conserved only modulo an integer, as is the case 
generally with finite groups.8 

Finally it should be noted that since the dis­
connected groups being considered are compact, it 
is possible to define invariant integration, and thus 
evaluate Kronecker products. Clebsch-Gordan co­
efficients can be obtained for the disconnected groups 
if the Clebsch-Gordan coefficients for the component 
of the identity are known. 

n. EXAMPLES OF DISCONNECTED GROUPS 

In order to satisfy Assumption I-namely that 
D contain isospin invariance-it is necessary to have 
the component of the identity contain SU2 as a 
subgroup. As an example of this, consider 
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D(al, a2, m) 

[ 8U~(al) o 1 
8U2 (a2)J (3) 

[8U~(a2) 8U~(al) 1 
where 8U2(al) is the group of unitary, unimodular 
2 X 2 matrices with three parameters al. The 
group 8U2(aa) ® D(al' a2, m) is the global symmetry 
group Go considered by Lee and Yang.6 Notice that 

D(al' a2, m)/D(a, 1a2, 1) '" 8 2, (4) 

where 8 2 is the permutation group on two letters. 
Since the component of the identity D(all a2, 1) is 
the direct product of two SU2 groups, the multiplets 
may be labeled by Ta and T~ and will have the 
structure of an isospin multiplet within an isospin 
multiplet. Clearly many disconnected groups can be 
formed along the lines of (3). Since all finite groups 
are subgroups of some permutation group and the 
permutation group 8" can always be written in the 
regular representation as 

8" = 

o 1 0 

1" = 001 

[

1 0 0 ••• o 1 0 ••• 

1 0 0 ••• 

, 0 0 1 0·· , 

o 0 1 0 ••• 

o 1 0 0 ••• 

1 0 0 0 ••• , 

o 0 0 1 ••• 

(5) 

disconnected groups can be generated by replacing 
the l's in the identity element of (5) by a suitable 
connected group.lO However, it should be pointed 
out that for 8,., n > 3, there are always more than 
three additive quantum numbers, which violates 
Assumption 2'. 

Instead of considering only SU2 it is possible to 
consider U2 (a) = SU2(a l , a2, aa) ® ela

• and form 
disconnected groups in exactly the same manner as 
above, everywhere replacing SU2 by U 2 • However, 
these groups all violate Assumption 2'. 

It is also possible to form disconnected groups 
in the following way: 

D(a, m) = 

[ SU~(a) 

[su~(a) 
{

D(a, 1)}, (6) 
D(a, 2) 

10 D. R. Speiser and J. Tarski, J. Math. Phys. 4 588 (1963) 
(preprint version). ' 

where * means complex conjugation. Such a group 
does not have as many additive quantum numbers 
as groups like (3). However, it seems to be possible 
to form groups like (6) only when D(a, m)/D(a, 1) 
is of order 2. The two groups which are analyzed 
in some detail in Sec. III are of the same type as (6). 
They are 

== Duo, (7) 

== Duo, (8) 

where Ua = 8Ua(al ... as) ® ela
,. The irreducible 

representations of these two groups are obtained 
and it is shown how they naturally bring in the 
additive quantum number baryon number. Thus, 
Duo will have the quantum numbers Ta and B 
while Du. will have Ta, Y, and B. ' 

m. IRREDUCmLE REPRESENTATIONS OF 
Duo AND Duo 

In this section the irreducible representations of 
DUI and Du. will be obtained. The characteristic 
feature of these two groups is that d-dimensional 
multiplets of the component of the identity having 
nonzero baryon number will become 2d-dimensional 
multiplets with baryon number Band - B while . ' those WIth baryon number zero will remain d dimen-
sional. Such a statement is not quite true for Du 
since 8Ua has representations for which the rep: 
resentation and its complex conjugate are inequiv­
alent. Duo is analyzed in more detail than Duo since 
the a~alysis of the more complicated group Duo is 
a straIghtforward generalization of that done for Duo. 

We thus consider the group Duo of (7). Now it 
is possible to write the group 8U2(a) as 

8U2 (a) = 12 cos al - i~·n sin al 

= 12 cos al - i~.l, (9) 

where 1 = n sin aI, ~ are the 2 X 2 Pauli matrices , 
al is an angle of "rotation," and n is a unit vector 
specifying the axis of "rotation." 

Notice that l2 = sin2 aI, SO that 1 specifies the 
direction and, except for a double valuedness the . . ' magmtude of the "rotatIOn." If now a "rotation" 
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specified by I' is followed by a "rotation" specified 
by 1, one gets 

where 

L = 1 cos a~ + I' cos al + 1 X I' (11) 

and gives the resultant of the two "rotations." 
Now parametrize U2 (0!) by 

U2(0!) ~ SUi1)eia, = (12 cos al - i't'.l)eia •. (12) 

Then it is possible to write Du. as 

D(l, a2, 1) = [ SU2~)eial su~(~e-ia·l ' 
(13) 

D(l, a2, 2) = [su~(~e-ia. SU2~)eiall' 

By multiplying the matrices (13) we get the following 
group table: 

D(l',a~, 1) D(l, a~, 2) 

D(I,a2, 1) D(l 01',a2 +aL 1) D(l 01',a2 +a~,2) 

D(I,a2,2) DCI 01'* ,a2 - aL 2) DCI 01'* ,a2 - aL 1) 
(14) 

where 1 0 I' means 1 cos a~ + l' cos al + 1 x I'. 
lt is clear from (9) that 1 * means II ~ -ll' l2 ~ l2' 
la ~ -lao 

Notice that the "*,, and "0" operations commute. 
Also 

D- 1 (1, a2, 1) = D( -1, -a2, 1), 

D-lCl, a2, 2) = D(-l*, a2, 2). (15) 

Finally 

D(l, a2, 2)D(l', a~, I)D- 1(1, a2, 2) 

= D(l 0 1'*, a2 - a~, 2)D( -1*, a2, 2) 

= D(l 01'* 0 -1, -a~, 1), (16) 

indicating that indeed D(l, a2, 1) is an invariant 
subgroup of Du •. 

The irreducible representations of D(l, a2, 1) are 

D(l, a2, 1) ~ RT.B(I, a2) = :!)T(I)eiBal, (17) 

where :!)T(l) are the Wignermatrices,ll T=O,!, 1, ... 
and B = 0, ±1, ±2, .... The letter B is used 
because it will be seen later to correspond to baryon 
number. 

11 E. P. Wigner, Group Theory and its Application to the 
Quantum Mechanics of Atomic Spectra (Academic Press Inc., 
New York, 1959), Chap. 15. 

Consider now those elements D(l, a2, 2) which 
satisfy the relation 

RT.B[D(I, a2, 2)D(I', a~, I)D- 1 (1, a2, 2)] 

is equivalent to RT.B(I', an (18) 

for alII' and a~. These elements plus all the elements 
D(l, a2, 1) form what is called the little group of 
the second kind, VI(T, B).9 

The kernel K(T, B) is that set of elements 
D(I, a2, 1) which are mapped into the identity of 
the representation RT.B. There are several little 
groups to be distinguished: 

(1) T = 0, B = 0, LII(O,O) = D u" 

LII(O, 0) ,...., 
K(O,O) = D(l, a2, 1), K(O, 0) = S2' 

(2) T, B ~ 0, LII(T, B ~ 0) = D(l, a2, 1), 

K(T, B ~ 0) = D(O, 0, I), (19) 

(3) T ~ 0, B = 0, LII(T ~ 0,0) = D u" 

K(T ~ 0,0) = D(O, a2, I), 

LII(T ~ 0, O)/K(T ~ 0, 0) ,...., D su" 

where Dsu. is Du. with a2 = O. 
The theory of little groups states that some of the 

irreducible representations of LII(T, B)/K(T, B) can 
be used to generate the irreducible representations 
of Du •. These representations of VI(T, B)/K(T, B) 
are called allowable by Lomont9 and it is easy to 
check that all of the irreducible representations of 
VI(T, B)/K(T, B) given in the next paragraph are 
allowable. 

The irreducible representations of VI (0, 0)/ K (0, 0) 
are trivial. From them two irreducible representations 
of Duo can be immediately given: 

{
D(l, a2, I)} {D(l, a2, I)} ~ 1 (20) 

D(l, a2, 2) ~ I, D(l, a2, 2) ~-1. 

The irreducible representations of VI(T, B ~ 0)/ 
K(T, B ~ 0) are given in (17) while the irreducible 
representations of Dsu. are given in Ref. 11, p. 342 
and can be summarized as 

D(l, 0, 1) ~ :!)T(l) 

D(l, 0, 2) ~ :!)T(I)MT. 
(21) 

MT is a (2T + I)-dimensional matrix which satisfies 
MT:!)T(l)(MT)-l = :!)T(1*) and [MT]2 = 12T+1I where 
12T+l is the (2T + I)-dimensional identity matrix. 
The irreducible representations of Duo generated by 
VI(T ~ 0, O)/K(T ~ 0, 0) are 
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D(l, 0:2, 1) -+ ;oT(!), 

D(l, 0:2, 2) -+ ;oT(l)MT. 
(22) 

To obtain the irreducible representations of Duo 
generated by the allowable representations of 
LII(T, B ~ 0), it is necessary to evaluate the 
2 X 2 matrix: 

{

I when D(O, 0, i)D(l', o:~, I)D-\O, 0, J) 

= = D(l, 0:2, m) 

o otherwise. 

One obtains 

[ 
Om.tOI.I'O"' ..... ' 

(Til = 
Om,2 01*.1' O-a". (h' 

0",.2 01.1'0", ..... ' ] 

0",.1 01 •• 1. 0- ...... ,' 

(23) 

(24) 

Then the irreducible representations generated by 
VI(T, B ~ 0) are 

sT.B(l, 0:2, m) = :E 11'.; ® RT.B(I', aD (25) 

or 

all element!!! 
of D(l',a.',l) 

D(l, 0:2, 2) -+ ST.B(l, 0:2,2) 

[ 
0 ;oT(IO)e

iBao
]. 

= :oT(l*)e-·Ba• 

(26) 

Multiplets of the group Du. can be labeled by 
IT, B; Ta, ±B) where T and B label the irreducible 
representation and Ta and ±B label the possible 
states in a given multiplet. Thus the group SU2 

has the doublets 

and 

These combine in Du. to form one quartet It, 1; 
±!, ±1). However, for particles with B = 0, no 
such doubling occurs, as can be seen from (22); thus 
the pions, labeled 

remain 

1, 0; ~,O) 
-1 

in the group Du •. Notice that since B can take on 
any integer value, multiplets with arbitrarily high 
baryon number are allowed. 

Exactly the same type of analysis can be carried 
out for D uolc . D u•lc is analyzed rather than Duo 
because at present there is no evidence for the 
existence of quarks. The only difference between 
Du. and Du,lc occurs because in SUslC some rep­
resentations and their complex conjugate may be 
inequivalent; for example, the 10 and 10 * representa­
tions are inequivalent. Thus, even when B is zero, 
a doubling of representations can occur. 

The little groups are now labeled rep, q)d, Bl, 
where d is the dimension and (p, q) the Weyl indices2 

which label the irreducible representations of SUs 
The little groups, LII(p, q)d, Bj, are 

(I) £11[(0, 0)11 OJ-generates two I-dimensional 
irreducible representations with the same structure 
as (20). 

(2) VI[(p, q)d, B ~ OJ-generates irreducible rep­
resentations of dimension 2d. 

(3a) VI[(p, q)d, B = 0), (p, q) and (q, p) are 
inequivalent-generates irreducible representations 
of dimension 2d. 

(3b) VI[(p, q)dB = 0], (p, q) and (q, p) are 
equivalent-generates irreducible representations of 
same dimension as (p, q)d. 

Only the little groups VIr (p, q)d, B ~ OJ generate 
multiples containing baryon number B and -B. 
The other little groups generate multiplets with 
baryon number zero. In analogy to D u., states of 
D u•,c may be labeled by I(p, q)d, B; T, Ta, Y, ±B). 

IV. CONCLUSION 

It has been shown how disconnected groups may 
be used in the study of higher symmetries. Though 
a careful analysis was only done for D u., the most 
interesting group is Du,lc' In this group the strongly 
interacting particles are placed in the following 
multiplets: 

(1) Baryons and antibaryons-I (1, 1)8, 1; T, Ta, 

Y, ±1)-16 dimensions, contains two eight-dimen­
sional representations of SUsIC. 

(2) Baryon and antibaryon resonances-I(a, 0)10, 
1; T, Ta, Y, ±1)-20 dimensional, contains the 10 
and 10* representations of SUaIC. 

(3) Mesons-I(I, 1)g, 0; T, Ta, Y,O)-eightdimen-
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sional, similar to the eight-dimensional representa­
tion of SUa/C. 

(4) Meson resonances-I (3, 0)10, 0; T, Ta, Y,O)-
20 dimensional, contains the 10 and 10* representa­
tions of SUa/C. 

The Clebsch-Gordan coefficients obtained from 
reducing Kronecker products of D u./c, such as those 
needed for baryon-meson scattering, is the same as 
in SUa/C, since no new overlapping states result 

JOURNAL OF MATHEMATICAL PHYSICS 

in Du./c . Thus, any predictions made by SUa/C, 
such as comparisons of cross sections of various 
reactions, is the same in Duo/c. 
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By means of the connected-diagram expansion a generalized Boltzmann equation is obtained for the 
Wigner distribution function f describing distinguishable quantum particles subject to constant 
electric and magnetic fields. This equation is exact and meaningful in the thermodynamic limit 
provided that the main interaction processes which cause the change in f involve finite numbers 
of particles. If the interaction processes are assumed to be localized in time, and long-time solutions 
are looked for, the equation could be simplified so that its collision term can be described in terms 
of f only just like the conventional Boltzmann equation for a dilute gas. 

1. INTRODUCTION 

RECENTLY Severnel generalized the diagram 
techniques developed by Prigogine and his co­

workers2 to discuss an inhomogeneous classical gas. 
In particular he obtained the generalized Boltzmann 
equation valid to the general order in coupling con­
stant, and showed that in the kinetic stage the 
collision term can be expressed in terms of the 
one-body distribution function only. In the present 
paper3 we deal with a quantum gas of distinguishable 
particles subject to constant electric and magnetic 
fields. 

In some earlier theoriesl.2
•
4 developed for non­

equilibrium probleIllS, use is made of the representa­
tion in which a chosen unperturbed Hamiltonian 
is diagonal. This makes the theories appear much 
dependent on the splitting of the Hamiltonian. In a 

* On leave from l'Universite Libre de Bruxelles, Brussels, 
Belgium. 

1 G. Severne, Physica (to be published). 
21. Prigogine,LyNon-Equilibrium Statistical Mechanics (In­

terscience, Inc., ).'jew York, 1962). 
3 The content of this paper is published in Phys. Letters 

12, 300 (1964). 
• L. Van Hove, Physica 21, 517 (1955); 23, 441 (1957). 

previous note, II the present author developed a rep­
resentation-independent connected-diagram expan­
sion treatment for an electron-impurity system, 
which allows one-body description. Generalizing this 
treatment, we shall, in the present article, derive 
a non-Markoffian evolution equation (3.11) for the 
one-body density matrix n (or Wigner distribution 
function f) describing a quantum gas. This equation 
is exact and meaningful in the thermodynamic limit 
(3.8) provided that the main interaction processes 
which cause the change in n involve finite numbers 
of particles. In many situations, the equation could 
be simplified so that its collision term can be de­
scribed in terms of n instead of the two-body density 
matrix which appears in the mechanical evolution 
equation (2.14). 

In the absence of electromagnetic fields and in 
the classical mechanicalliInit the equation becomes 
equivalent to the equation derived by Severne.1 

The present treatment shows that in the kinetic 
stage, the integral of the product of two-body density 
matrix and potential in the mechanical evolution 

5 S. Fujita, Phys. Letters 10, 175 (1964). 
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equation (2.14) can be expressed in terms of one­
body density matrix. This is of relevance to, but 
different from, Bogoliubov's conjecture6 on the func­
tional dependence of the two-body distribution func­
tion through one-body distribution function. The 
difference may be resolved by saying that those 
two-particle correlations in the two-body distribu­
tion function which make the conjecture approxi­
mate are effectively destroyed in the thermodynamic 
limit by the integration with respect to the coor­
dinate of one of the two particles in (2.14). 

The applications and the quantum statistical gen­
eralization of the present theory will be discussed 
in separate publications. 

2. DENSITY MATRIX AND ITS 
MECHANICAL EVOLUTION 

Let us consider a system of distinguishable par­
ticles characterized by the Hamiltonian 

H == E h~j) + A E v(ij} , (2.1) 
i i>i 

where the upper indices denote particles and X the 
coupling constant. The single-particle Hamiltonian 
ko may contain the energies due to the electric and 
magnetic fields (E, B), and may be written as 

1 [ e J2 ko == 2M P - c A(r, t) + e4>(r, t), (2.2) 

where the customary notations are used. For sim­
plicity we assume that the external fields are con­
stant in space and time: 

E == - V 4> = constant, 

B == V)( A = constant. (2.3) 

It will not be difficult to extend the following treat­
ment to more complicated situations. 

The position density matrix is defined by 

n(rlr 2 , t) == Tr {nI2P(t)} 

[== nr(R, t)], (2.4) 

n12 == E IrJj»(r~j) I, (2.5) 
j 

where pet) is the density operator, and Ir~j» and 
(r!j) I are ket and bra vectors associated with the 
position value rk of the particle j. We shall specify 
the e - ~" element 

e == (r,(l) , r~(2), ... ,r~(N» (2.6) 

eN. Bogoliubov, J. Phys. (URSS) 10, 256, 265 (1946)' 
English translation, in Studies in Statistical Mechanics, edited 
by G. E. Uhlenbeck and J. de Boer (North-Holland Publishing 
Company, Amsterdam, 1962), Vol. I., pp. 1-118. 

of an arbitrary N-body operation A by the set of 
numbers (q, Q): 

(~'I A Ie') == A.(Q), (2.7) 
q == e - ~", Q == iW + ~"), 

or 

In this specification the equation of motion for 
nr(R, t) == n(rlr 2, t) can be written as 

[a/at + if)o(r, R)]nr(R, t) 

= -iX ft J ... J d3N q d3NQng!(Q)b(kil 

x exp [-iX(q, Q)t]P.(Q, 0), 

X(q, Q) == L f)~j)(q, Q) + X L b(if)(q, Q), 
i i>i 

f)~j)(q, Q) == fJo(r,R) 

= .!. (-i.E.- - ~ A(R») 
M or c 

.( -i a~ - ~A(r») - er·E, 

b"j)(q, Q) == b(rs, RS) 

= vCR + ir - S - is) 

- vCR - ir - S + is), 

(2.9) 

(2.10) 

(2.11) 

where (2.3) is used in deriving the first equations 
of (2.11). 

If we introduce the two-body density matrix by 

n(rlra, r2r4 , t) == Tr {nI3.24P(t)} 

n13.24 == E Ir~il) IriH)(riil I (r~j) I, 
i>i 

we may write (2.9) as 

{~t + ~ [ -i :r - ~A(R)J 
.[ -i a~ - ~ A(r) ] - ier.E~r(R, t) 

= -iX J d3S[v(R + ir - S) 

(2.12) 

(2.13) 

- vCR - ir - S)]n(R + irS,R - irS, t). (2.14) 

In this equation we see that the evolution of the 
one-body density matrix is describable in terms of 
one- and two-body density matrices. In general we 
can see that the mechanical evolution of the k-body 
density matrix can be described in terms of density 
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matrices involving at most k+ 1 particle coordinates, 
k + 1 ~ N (the number of particles). The chain 
of evolution equations, k = 1, 2, ... , N - 1, is 
known as the hierarchy equations of Bogoliubov­
Born-Green-Kirkwood-Yvon. 

If we introduce the gauge-invariant Wigner dis­
tribution function f by 

f(R,~, t) == J d3
r 

X exp [-ir.(~ + ~A(R»)}r(R, t), 
(2.15) 

f d37r 
nr(R, t) = (27rl' 

X exp [ir.(~ + ~A(R») }(R,~, t), 
we can easily show that the lhs (left-hand side) of 
(2.14) becomes 

[~t + !~'a~ + (eE + ~~XB)':~] 
X f(R,~, t), (2.16) 

which is just the expected form of the time variation 
term subtracted by the flow term in the conventional 
Boltzmann equation. In this equation, which is valid 
for the kinetic description of a dilute gas, the collision 
term af/atlcolli8ion is expressed in terms of one-body 
distribution function only, thus making the equation 
closed in contrast to the mechanical equation (2.14). 
Does this characteristic of the collision term still 
hold in more general situations? If so, in what condi­
tions? These questions will be answered in the follow­
ing section. 

3. GENERALIZED BOLTZMANN EQUATION 

We may expand ei:JC t in the perturbation series: 

e-':JC' = e-·:JC·{l + t (-iA)k f d71 1T

• d72 

X l Tk

-. d7k '0(71)'0(72) ... '0 (7k) ] (3.1) 

(3.2) 

We represent terms in the perturbation expansion 
of the rhs of (2.9) by diagrams. 

We draw N horizontal solid lines for the N par­
ticles. Corresponding to b (i;) (7) we draw a vertical 
dotted line, called potential bond, connecting the 
particle lines i and j at t (time) = 7, where the time 
is measured from the right to the left. Corresponding 
to those components of p(O) involving potentials 

-----N 

-..---~--3 

...---L.-,,...-l--- 2 

a b 

FIG. 1. Diagrams representing components of the rhs of 
(2.9). The diagram (a) is connected and (b) disconnected. 

b(U) we draw dotted lines connecting the lines i and 
j at t = O. 

In this way we can represent all the perturbation 
terms in the one-to-one correspondence. Some typical 
diagrams are drawn in Fig. 1. 

A diagram is said to be connected if the set of 
particles describing the potential bonds cannot be 
separated into two or more subsets. Otherwise the 
diagram will be called a disconnected one. For ex­
ample the diagram (a) in Fig. 1 is connected while 
the diagram (b) is disconnected. 

Certain diagrams have a potential bond of the 
type M, like the VM in the diagram (b), which sees 
nothing but the two free particle lines on its left. 
A particle line segment is said to be free if the 
diagram breaks into two by cutting it. Denoting 
the coordinates of the two particles with (rr', RR'), 
we may write the contribution of the diagram in 
the following form: 

f d"! J ... J d3R d3r d3R' d3r' o(3)(r)o(3)(r') 

X exp {-i[fJoCr, R) + go(r', R')](t - 7) I 
X [vCR + !r - R' - !r') 

- vCR - !r - R' + !r')]g(rR, r'R' , 7), (3.3) 

where g is a certain function of the arguments 
shown, and the two delta functions arise from n12.(Q). 
We immediately notice that the integral (3.3) will 
vanish if the exponential function is replaced with 1. 
Introducing the following expression for the delta 
function 

5(3)(r) = (2!l J d37r exp {ir{ ~ + ~ A(R)]} , (3.4) 

we may write (3.3) as 

l ' J J 3 3, d
3
7r d

3
7r' 

o d"! • . . d R d R (27r)3 (27r)3 

X [exp {-i[ho(~, R) + ho(~', R')](t - 7) I - 1] 

X [V(R + ~ :~ - R' - ~ a!') 
- V(R - ~ :~ - R' + ~ a!') ]g'(~R, ~'R', 7), 

(3.3a) 
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.71: a ( e71: ) a 
ho(7I:,R) == -~ M"aR + eE + cM xB "a7l:' (3.5) 

We thus see that (3.3a) can be written as a surface 
integral which may vanish in many situations of 
physical interest (notably excluding the case of long­
range forces). 

This means that any diagram having aM-type 
potential bond contributes nothing. 

All the disconnected diagrams have M-type poten­
tial bonds except those which contain some connected 
parts involving potential bonds exclusively at t = O. 
These parts can be shown to contribute only to the 
normalization, and therefore these are irrelevant to 
the temporal change of nr(R, t). 

Thus, we have only to deal with connected dia­
grams containing the potential bond at t = t. We 
may simplify the drawings by omitting particle lines 
without potential connections. For example, we may 
represent the diagram (a) in Fig. 1 as a component 
of the diagram (a) in Fig. 2 where we leave out 
indices for particle lines. By such an unindexed dia­
gram we may imply a collection of particle-indexed 
diagrams of the same structure. 

A connected diagram will in general contain 
several free-particle line segments. Some free seg­
ments are indicated by check marks V in Fig. 2. 
A diagram will contain a certain number of those 
parts which consist of nonfree line segments and 
of potential bonds, and which are connected with 
each other by free segments. Such a part will be 
called a d-part or g-part according to whether it 
contains or not a potential bond at t = O. The 
diagram (a) in Fig. 2 has a g-part and the diagram 
(c) a d-part. The diagram (b) contains two g-parts, 
one of which has the potential bond at t = t. 

.1 
I 

.1 
9 v , 

I ,I , • 
" a 

'--------'---~ 

c 

. . 

I 

: 
" 

·l v ,I 
I I V , I 

~ ·l ~ I i 
I I 
:r{ 

, 
,I v I . 
V 

b 

d 

FIG. 2. The unindexed diagram (a) corresponds to the set 
of indexed diagrams of the same structure as that in the 
diagram (a) in Fig. 1. The reducible diagram (b) contains 
two g-parts. The diagram (c) contains a d-part. The diagram 
Cd) containing a M-type potential VM contributes nothing. 

a b 

FIG. 3. Diagrams representing terms in the expansion of the 
density matrix (3.6). The diagram (a) is reducible to the dia­
gram (b). 

If a diagram contains a g-part suspended by two 
free segments corresponding to the same particle or 
a d-part standing to the right of a free-line segment, 
it can be simplified or reduced by suppressing the 
g- or d-part. Otherwise the diagram is called irre­
ducible. In the reduction, the only particle line rep­
resenting a particle at the fixed values (r, R) should 
not be suppressed. By this rule, the reduction be­
comes unique as illustrated in Fig. 3. 

We have so far considered diagrams representing 
the rhs of (2.9). We may represent by diagrams the 
perturbation expansion of the density matrix 

nr(R, t) == L J ... J d3N q d3N Q11g~(Q) 
1 

X e-i:JC(o.Q)' Po(Q, 0). (3.6) 

Analyzing in a similar manner, we find that any 
diagram giving a nontrivial contribution is a con­
nected one containing a certain number of g- and/or 
d-parts. A typical diagram is drawn in Fig. 3(a). 
It is immediately seen that every diagram (except 
one) is reducible to the unique diagram (b) in Fig. 3 
which is free from any potential bond. 

The diagrams drawn here seem to represent the 
particles evolution contributing to the density ma­
trix nr(R, t) at t = t, and g- and d-parts describe 
the effect of interaction processes, each involving 
a few particles and extending over a region of the 
order of the force range in linear position. 

The same sort of interpretation will hold for 
diagrams representing the rhs of (2.9). 

Let us consider an irreducible diagram containing 
a g-part. Its contribution will be contained in 

J ... J e-i:JC •• { -iA'U(t) + * (-iAl+ l 
{ dTl 

X {' dT2 ... {H dTk['U(t)'U(Tl) '" 'U(Tk)](i.)} 

(3.7) 

where the upper index ic means that the contribution 
of only irreducible connected parts (g-parts in the 
present case) should be taken; m + 1 is the number 
of particles involved in a chosen part. 
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Consider now a reducible diagram which upon 
reduction gives rise to the irreducible diagram. By 
the construction of the diagram the two sets of 
particles involved in the evolution of two particles 
of the m + 1 particles are separate from each other. 
Therefore, the evolution of one particle may be 
followed independently of that of the other. Further­
more, the structure of all those subdiagrams which 
upon reduction give rise to the free line segment 
for one particle is seen to be identical with the 
structures of all the diagrams for nr(R, t) in the 
thermodynamic limit: 

n -+ ro such that 

N /n = constant. (3.8) 

Noticing these points we may write for the con­
tribution of all the irreducible diagrams containing 
g-part and their associated reducible diagrams 

G(r, R, t; n) == J ... J IT 5(3)(r(l)e-·3Co1 

Is2 

X {-i"A'O(t) + ~ (_i"A)k+l L dTl f' dT2 

X {h dTl:['O(t)'O(Tl) ... 'O(Tl:)r") }e'~OT(') 
m+1 

X IT d3
r(l') d3R(I') exp (i,,(I')f)~I'»nr(l') 

l '=2 

X (R(I') , ,,(1'», (3.9) 

where ,,( l) denotes the smallest of those T; which 
characterize the interactions '0 involving the par­
ticle 1. 

The contribution of all irreducible diagrams con­
taining d-parts and their associated reducible dia­
grams may be written as 

D(r,R, t, p(O» == 11 e-'3CO
'{ -i"A['O(t)P.(Q, 0)](") 

+ t (_i"A)k+l l' dT1 1T

' dT2 .,. 1Tt

-' dTk 
1 0 0 0 

which is not expressible in terms of nr (R, t). 
Thus we may write for (2.9) 

[a/at + ifJo(r, R)]nr(R, t) 

= G(r, R, t;n) + D(r, R, t; p(O» (3.11) 

in the thermodynamic limit. 
Using the relations (2.15) and (3.4) ,we may re­

write (3.11) as 

{a M-l a [ e ] a} at + ~'aR + eE + Mc ~ xB 'a~ fCR,~, t) 

= GCR,~, t, f) + D(R, ~, t; p(O». (3.12) 

Here in view of the transformations (2.15) func­
tions of (R, '11') should be constructed with the aid 
of the equivalence relations: 

~ + ~ ACR) ~ -i ! IR' 

-i~ I + ~A(r)~ -i~ I, 
aR" c aR r 

R~R. 

(3.13) 

If we assume that the change of feR, '11', t) is due 
to interaction processes localized in space and time 
the term D coming from d-parts describing localized 
interactions may be dropped out a long time com­
pared with the average collision duration after 
initial time point t = O. In this case, the equation 
(3.12) becomes a closed equation with respect to f 
just like the usual Boltzmann equation for a dilute 
gas. The equation can be further simplified in prac­
tical applications which will be dealt with iIi separate 
publications. 
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Using the results of a previous paper, the probability of a fluctuation occurring in a given time 
interval, of certain dynamical variables, is considered for a rather general Donequilibrium situation 
and also a more specialized equilibrium case. In the first case we show that this probability vanishes 
at least as fast as liN. In the second case we obtain a much stronger decrease of the probability 
with increasing N. 

I. INTRODUCTION 

IN a previous paper l an upper bound has been 
found for the probability that a dynamical vari­

able will suffer a fluctuation from its ensemble mean 
value, of a given size in a given time interval. The 
theorem is applicable to fluctuations in either equilib­
rium or nonequilibrium situations. In Sec. II of this 
paper we give an application to certain nonequilib­
rium situations. In Sec. III we repeat an application 
to an equilibrium case (fluctuation of kinetic energy 
in a canonical ensemble) given in the previous paper, 
but we obtain a much stronger result by the use 
of more specialized techniques. 

The notation in this paper will be the same as 
in Ref. 1. 

II. NONEQUILlBRIUM CASE 

The fluctuation problem in the nonequilibrium 
case arises in the following way. One has an ensemble 
distribution function which is not constant in time. 
From this one can compute the mean values of 
variables (A),. This is most often done by deriving 
from the Liouville equation for the distribution func­
tion in r space I(x, t), some kind of an irreversible 
kinetic equation, and then using the kinetic equation 
to find the time dependence of various dynamical 
variables. To be specific let us consider a distribution 
such that a particular (A), approaches some sta­
tionary value A. in a time tT , for example, some 
kind of relaxation to equilibrium process. Even 
supposing that (A), is known, a question arises as 
to what the time dependence of (A), has to do with 
the actual variation of A for the single system in 
which we are watching the relaxation. What we 
would like is that most or all of the members of 
the ensemble have A behaving nearly the same way 
as (A), at least over a time interval long enough 
to follow the relaxation process, i.e., longer than tT • 

.... Supported in part by the U. S. Atomic Energy Com­
IDlSSlOn. 

t Supported in part by the A. E. C. Radiation Laboratory 
of the University of Notre Dame. 

I G. L. Jones, J. Math. Phys. 6, 106 (1965). 

To say it loosely, this will guarantee that the 
relaxation is characteristic of a single system and 
is not a characteristic of only the ensemble mean 
values. 

Now in Ref. 1 we have proven that if pea, r) is 
the probability that a member of the ensemble has 
IA(x, t) - (A},I > a for at least one t in the interval 
o to r, then 

pea, r) :::; 4a-2C + 8a-a { D(r') dr', (1) 

where 

C = ([A (x) - (A}o12}o 

D(r) = (I (A(x), H(x)} 

(2) 

- ((A (x), H(x») }TI [A(x) - (A)T1 2 )T' (3) 
We use the notation ( }T to mean the phase average 
using the distribution function I(x, r). 

Now if pea, r) « 1 then for most of the members 
of the ensemble IA(x, t) - (A},I < a for all t in 
the interval 0 to T, and this is just the property 
we mentioned in the discussion at the beginning of 
this section. Whether or not P (a, T) « 1 will depend 
on a, r, H(x), A(x), and I(x) and we must therefore 
make some assumptions about these quantities. It is 
of particular interest when a-2C and a-aD(T) turn 
out to be of order liN, where N is the number 
of degrees of freedom of the system, since one can 
then make P (a, T) small by considering large systems. 

We shall consider a classical gas of N particles 
in a container of volume n interacting with smooth 
two-body forces of finite range. Therefore x = 
(r" PI ... rN, PN) and 

H(x) ~ E -p~/2m + ! E' V(lr; - ri/)o (4) 
i i.i 

We shall consider fluctuations of any dynamical 
variable of the form 

A(x) = E a(p;), (5) 
i 

that is, a sum of fu~ctions of the individual particle 
momenta. The class of distribution functions we wish 

1009 
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to allow is, in general, the same as those considered 
by Prigogine and co-workers2 in their treatment of 
the nonequilibrium behavior of a gas. They assume, 
roughly, that the generic reduced distribution func­
tions are bounded in the limit N --t CD, n --t CD, and 
N In constant, and that 'all correlations are of finite 

range in this limit. To be specific we make the 
following requirements f(x, t) = t(r l , PI ... rN, PN, t) 
shall be a normalized ensemble distribution function, 
symmetric under interchange of particle indices. It 
shall be such that the following functions are finite 
in the thermodynamic limit. 

<P(PI, t) = J f(rl, PI '" rN, PN, t) drl ••• drN dp2 " . dpN, (6a) 

f.(rl , PI .. , r., P., t) = [N!/(N - 8)!] J t(rl , PI ... rN, PN, t) dr.+l .,. drN dp.+l ... dpN, (6b) 

f •. r(rl , PI '" r., P., P.+l '" pr, t) = [N!/(N - 8)!] J f(rl, PI ... rN, PN, t) dr'+l " ·drN dpr+l '" dpN' (6 c) 

We also assume the factorization property 

f •. r(rl , PI '" r" p., P.+I ... p" t) 

= f.(r l , PI ... r" p" t)<P(P.+I, t) ... <p(P" t). 

With these assumptions we note that 

(A), = N(a), = N J <p(P, t)a(p) dp, 

(7) 

(8) 

where (a), is supposed to depend only on the ratio 
N In. Hence A is an extensive variable. Now we 
shall consider only macroscopic fluctuations, that is, 
we choose 

(9) 

where we suppose "I to be independent of the size 
of the system and much less than 1. (We note 
that in certain cases where (a)o may vanish identi­
cally, usually because of some symmetry, one must 
measure ex by some other criterion.) 

Now the dependence of the quantity C on the 
size of the system can be determined from the 
assumptions we have made. Using (2) and (5) we 
have 

C = ~ J [a(p;) - (a)o][a(pj) - (a)o] 
'oJ 

x t(r l , PI '" rN, PN, 0) drl .. , dpN' 

Using the symmetry of f under interchange of 
particle index and splitting the sum into a part 
with i = j and a part i ~ j we have 

C = J [a(p;) - (a)O][a(p2) - (a)o] 

Now from (6) and (7) we see that 

J ft(r, p, t) dr = N<p(p, t), (lla) 

J f2(r l , PI, r2, P2, t) dr l dr2 

= N(N - 1)<p(P1' t)<P(P2, t). (llb) 

Hence, 

C = N(N - 1) J [a(PI) - (a)o] 

X [a(p2) - (a)O]rp(PI' 0)rp(P2' 0) dpi dp2 

+ N J [a(p) - (a)o]2<p(p, 0) dp. 

The first term vanishes identically because of the 
independence of the integrations. The expression for 
C can then be written 

C = N([a - (a)o12)o = N[(a2)o - (a)~], (12) 

where both (a2 )o and (a)~ do not depend on the size 
of the system. From (12) and (9) we find 

ex -2C = (N "12) -1«a2)o(aof2 - 1), (13) 

and this we can make as small as we wish, for 
fixed "I, by increasing the size of the system. 

The treatment of the quantity D(r) is merely a 
slightly more complicated version of the above 
argument. From (4) and (5) we have 

{A(x), H(x)} = - L:' o;(Pi).F(r;, r j), (14) 
i.j Pi 

where F(r" ri) is the force exerted by the jth particle 
on the ith particle, and we have used F(r" rj) = 
-F(rj, r,). For convenience we shall write (14) in 
the form x f2(rl , PI, r2, P2, 0) drl dr2 dpi dp2 

+ J [a(p) - (a)o]2ft(r, p, 0) dr dp. (10) {A(x), H(x)} = L' F(r;, r;)· [oa(p;)j0pi 

21. Prigogine, Non-Equilibrium Statistical Mechanics (Jolm 
Wiley & Sons, Inc., New York, 1962). - oa(p,)/op;] = L' K(r" Pi, r j , Pj)· 

;, i 
(15) 
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Note that K is invariant under interchange of 
particle index. We shall define 

K(t) = J IK(cl , PI, CZ , P2)1 

X Mc l , PI, C2, P2, t) dCI dcz dpi dp2' (16) 

Since K(c ll PI, C2, P2) vanishes for ICI - c21 greater 
than the range of the intermolecular force, K(t) is 
proportional to Q; that is, it is an extensive quantity. 
We define an intensive quantity by 

K(t) = Nk(t). (17) 

From the definition (3) of D(r) and the triangle 
inequality one can obtain 

D(r) ~ L' L (IK(cI, PI, Cj, pj)1 
i,; .i: ,I 

X [a(pk) - (a)T][a(pZ) - (a)T])T 

+ L Nk(r)([a(pk) - (a)T][a(pZ) - (a)T])T' 
k.l 

The second term can be written as 

N 2k(r)[(a2)T - (a)~] 

by the same argument that was used to derive (12). 
We split the first term, involving four summations 
into a number of contributions. 

(a) Those terms in the sum for which no two 
indices are the same. This contribution can be 
written as 

J In.(cl , PI, cz , Pz)1 [a(pa) - (a)T][a(p4) - (a),] 

X Mcl, PI '" c4 , P4, 7) dCI ... dp4. (18) 

The Ta and T4 variables appear only in f4 and we 
see from (6) and (7) that 

J f4(C I , PI '" C4 , P4, T) dra dC4 

= (N - 2)(N - 3)f2.4(rl , PI, Cz , P2, Pa, P4, r) 

= (N - 2)(N - 3)Mcl , PI, C2, Pz, r)r,o(p~, r)r,o(P4, r). 

Using this result (18) must vanish identically be­
cause of either the Pa or P4 integration. 

(b) Those terms in the sums for which only one 
pair of indices are the same, that is; i = k and 
j ~ i ~ l ~ j and three other combinations sub­
stituting j for i and/or I for k. All of these terms 
vanish by exactly the same kind of argument as 
in part (a), namely there will exist in these con­
tributions a factor of the form f [a(p) - (a),l X 
~(p, r) dp = O. However, terms of the form k = I, 
t ~ k ~ j give a nonzero contribution of 

J IK(rl, PI, C2, P2)1 [a(pa) - (a),]Z 

X fa(c l , PI '" Ca, Pa, r) dCI '" dpa. (19) 

If we do the Ta integration and again use (6) and 
(7) as in part (a), we can put (19) in the form 

N(N - 2)k(r)[(a2
), - (a)!l, (20) 

where we have also used (16) and (17). 
(c) Those terms with two pairs of indices equal. 

There are two possibilities, i = k ~ l = j and 
i = l ~ k = j, and together they contribute 

2 J IK(cl ,PI,r2,P2)1 [a(PI) - (a),][a(P2) - (a),l 

X f2(CI , PI, C2, P2, r) dCI .•. dp2' 

Because K vanishes for ICI - r21 greater than the 
range of intermolecular force, this contribution is 
proportional to Q. 

(d) Those terms with three indices the same. The 
possibilities are i ~ j = k = land j ~ i = k = l. 
The contribution is 

2 J IK(c l , PI, C2 , P2)1 

X [a(pI) - (a),]2Mcl, PI, C2, P2, 7) dCI '" dp2' 

This contribution is proportional to Q for the same 
reason as in (c). 

If we collect all of these contributions together 
we obtain 

D(r) ~ 2N2k(r)[(a2), - (a2 ),1 + O(N). (21) 

Where we have indicated those terms proportional 
to N or Q by O(N). We will assume them to be 
negligible compared to the term proportional to N 2

• 

Using (21), (9), and (12) in (1) we obtain 

P(-y(A)o, 7) ~ 4(Nlfl[(a2)o(a);;-2 - 1] + 16(N,/)-1 

X i' k(t)[(a2Ma);;-a - (a)~(a);;3] dt + O(N-2). (22) 

All of the quantities appearing in this expression 
are intensive, i.e; independent of the size of the 
system for large systems, except for N, therefore 
pea, r) can be made arbitrarily small for large­
enough systems. 

This result can only be regarded as suggestive. 
In any macroscopic system N, although large, is 
finite and therefore one should compute the right­
hand side of (22) for a specific system. One also 
must verify that the terms of order I/N2 are neg­
ligible. We shall leave this argument now and 
proceed to an example of a specific nature. 

m. FLUCTUATIONS OF KINETIC ENERGY 

In Ref. 1, a calculation of the bound for pea, r) 
was done for the case where f(x) was a canonical 
ensemble and A (x) was the kinetic energy. In this 
calculation, as in Sec. II of this paper, the bound 
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was seen to vary as I/N for large N. We wish to 
show that a smaller bound, which decreases much 
more rapidly with increasing N can be found for 
this specific example. In order to do this we repeat 
the calculation of Ref. 1 using different techniques. 

For this calculation we use the bound on pea, r) 
given by (36), (37), and (39) of Ref. 1, that is 

pea, r) ~ (a - ao)-l 

X [/,,: G'(a') da' + l' D'(ao, r') dr' J. 
Where ao is any number less than a, and 

G'(a) = f t(x) dV, 
IA(x)-(A)ol>" 

D'(a, r) = f I{A(x), H(x)} 
IA(%l-(Ahl>" 

- ({A(x), H(x)}),1 t(x, r) dV. 

We shall take 

t(x) = z-Ie-~H("), 

z = (2:mYN / e- f1v drl ••• drN, 

H(x) = K + V = Ep~/2m , 
+ ! E' V(lr. - riD, 

i .i 

A(x) = K = E p!/2m, 
i 

{A(x), H(x)} = - E' Fi(lr, - riD'p';m, 
., i 

Fi(/r; - rll) = aVOr. - riD/ar" 

(A) = 3N /2(3, 

a = 'Y(A), ao = 'Yo(A), 'Yo < 'Y. 

Equations (24) can be written 

(23) 

(24a) 

(24b) 

(25a) 

(25b) 

(25c) 

(25d) 

(25e) 

(25f) 

(25g) 

If we define the pair distribution function by 

Mrl , r2) = N(N - 1) 

X / e-fJV drs'" drN / / e-fJV drl '" drN 

and use the triangle inequality in (26b) we obtain 

D'(a, T) ~ Z-I E' f IFi(lr, - ril) 
i'; IK-(K)I>" 

.p';2ml e-flH(zl dV 

= (fJ/27fm)tN(N2 - N)-l 

X E' f [/ !Fi<lr; - rll).p;/m! 
i.1 IK-(KII>" 

(28) 

If the intermolecular potential is spherically sym­
metic, and of finite range, and if !2 is large then 
t2 is a function of Iri - ril alone. In this case 

/ Mr;, r;) IF.Clr, - rij).p.;ml dr; dr; 

= 27f!2p.Q/m, (29) 

where 

Q = {" IF(r) I Mr)r2 dr. 

Combining (30) and (28) we have 

D'(d, r) ::; (fJ/27fm)tN[27f!2Q/mJ 

(30) 

X f Pie- 13K dpl ... dpN' (31) 
IK-(Kl!>a 

We see that both (27) and (31) involve integrals 
over only part of momentum space. One can remove 
the restriction on the region of integration by using 
the Dirchlet discontinuous factor. 3 We consider the 
function 

G'(a) = Z-I f e- f1H
(z) dV 

IK-(KII>,. 
(26a) S,.(x) = 1 for lxl < a, 

S,.(x) = 0 for Ixl ~ a, 
which has the integral representation 

(26b) S",(x) = (27fi)-l 

(32) 

In both (26a) and (26b) the integration goes over 
all of configuration space since K involves only the 
momenta. In (26a) the coordinate integration just 
cancels a factor in Z-l and we are left with 

( 
(3 )iN f G'(a) = -2- e-/3K dpl ... dpN' 
7fm IE-(EII>" 

(27) 

(33) 

Now let us consider the integral which appears 
in (27), 

a See, for example, C. Kittel, Elementary Statistical Phy8ica 
(John Wiley & Sons, Inc., New York, 1958), Appendix B. 
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= L:'" e-
fJK dpi ... dpN 

-f e- fJK dpi ... dpN 
IK-(KlI<a 

-L:'" SaCK - (K»e- fJK dpi ... dPN = II - 12' 

I I is a standard integral, 

(34) 

(35) 

To treat 12 we use (33) and assume we can inter­
change the order of integration 

12 = (2'11'~rl i:'" y-I{J e-fJK[e-IU(K-(KI-al 

- e-'U(K-(KI+alJ dpi ... dPN} dy. (36) 

Since {K) and a are not functions of the momenta, 
we need only evaluate 

J e-(/J+iulK dpi ... dpN 

[4 1'" -(/J+iu)p·/2,. 2 d IN = 'II' e p p = 
o 

With this result 12 becomes 

12 = (2'11'i)-1 L:'" y-I(fj 2~~yyN 

( 21rm )IN 
~ + iy . 

X {e,u«K)+al - e'U«Kl-a)} dy. (37) 

This integral can be evaluated exactly by the method 
of residues, however, the result comes out in series 
form and is inconvenient for large N. Since we are 
only interested in large values of N a more manage­
able result is obtained by the method of steepest 
descent. To do this let us deform the path of integra­
tion in (37) so that it passes below the origin in the 
complex y plane (Fig. 1) and write 12 as the sum 
of two contributions 

where 

1: = (2'11'i)-1 

I ± = (2 ')-1 J ( 2'11'm )IN ,u«KI±a) -I d 
2 'II"t R +. e y y. 

C fJ ~y 
(38) 

II 
-----~-

c 

----~--

FIG. 1. Complex y plane. 

In the integrand there is a simple pole at the origin 
and a multiple pole at y = ifj. If 3N /2 is not integer 
there will be a cut starting at y = ifj also. 

Using (25f) and (25g) one can write 

Ii = (2'11"tTI i Y -I exp {!N[ In (fj 2~~yrN 

+ iy(l ± 'Y)/fj]} dy. (39) 

For large N, the saddle-point method gives an 
approximate value for these integrals. The saddle 
points occur at ifj'Y('Y ± 1)-1 and since 'Y > 0 both 
of these points lie below ifj on the imaginary axis 
(points A and B of Fig. 1). Now let C+ and C­
be paths passing through points A and Band 
parallel to the real axis. Let us consider r, with 
saddle point ifj'Y('Y + 1)-1. For all positive values 
of 'Y the integrand vanishes at y = ± <Xl therefore 
by Cauchy's theorem we can set the integral along 
C equal to the integral along C+ plus the contribu­
tions from the pole at the origin. The integral along 
C+ can be done by the saddle-point method. Without 
going into the details, 

I; = (2'11'm/{j)!N{1 - (3'11'N'Y2rl} 

X exp {-!N[ln (1 + 'Y) - 'YJ}. (40) 

Let us consider r for the case where 'Y < 1. The 
saddle point is ifj'Y('Y - 1)-1 which is below the 
origin (point B in Fig. 1). Since the integrand 
vanishes at y = ± <Xl, the integrals along C and C­
are the same and again by saddle-point integration 
we obtain 

I; = (2'11'm/{j)!N(3'11'N'Y2)-1 

X exp {!N[ln (1 - 'Y) + 'YJ}. (41) 

For 'Y > 1, I~ = 0 and this can be seen in (39). 
Since 1 - 'Y < 0, the contour C can be closed in an 
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infinite semicircle below the real axis. As there are 
no singularities in this region the integral must 
vanish. We can therefore write for any 'Y 

1-; = (211'm/{1)!N(37rN'Y2rt 

X exp {-iN[In (1 - 'Y) + 'Y] 10(1 - 'Y). (42) 

Where O(x) = 0 for x < 0 and O(x) = 1 for x > o. 
Combining (42), (40), (38), (35), (34), and (27) we 
obtain 

G'(a) = (311'N'Y2)-! {exp (!N[ln (1 + 'Y) - 'YD 

+ 0(1 - 'Y) exp (!N[ln (1 - 'Y) + 'YDI 

where a = 'Y3N /2(3. 

(43) 

By the same technique the integral appearing in 
(31) can be evaluated. We give only the result for 
the case where 'Yo « 1 and we have set In (1 ± 'Yo) =r 
'Yo = h~ 

D('Yo(K) , r) :::; 2nQ(iNm(3'Y~)-t exp (-3N'Y~/4) (44) 

From (23) we see that it remains to integrate 
G'(a) given by (43), from ao to 00. 

f a> 3N fa> 
a. G'(a) da = 2(3 "I. G'('Y(K» d'Y 

= [(311' N) -t3N /2{1] 

X [i~ exp {iN[ln (1 + 'Y) - 'Y]h-1 d'Y 

Where we have taken M = iN to be integer. 
Since M!/Mr(M - r)! < 1, we can write 

fa> exp (!N[ln (1 + 'Y) - 'YJh-1 d'Y 
..,0 

M 

< (khof1e-M"Io L (1 + 'Yo)M-r 

(47) 

The sum of (46) and (47) can be written, for 'Yo « 1, 

'Y;1[1 + (M'YO)-l] exp (-M'Y~/2), 

so (45) becomes 

f'" G'(a) da :::; [(311'Nf I 3N /2{1] 
a. 

(48) 

Weare interested in the case where N 'Y~ » 1. We 
can drop the IN'Yo term in (48); then (23) becomes 

P(-y(K), r) < (311'N)-! + (4/3)(3N3m/2{1)-t 

(49) 

There is no doubt that the bound (49) could be re­
duced by more careful evaluation of some of the 
integrals involved in this treatment. One can also 

+ f. exp (iN[ln (1 - 'Y) + 'Y]h-1 d'Y J. (45) pick 'Yo to minimize (49). For N'Y2 » 1 this is given 
to lowest order in (N'Y2)-1 by 

Instead of attempting an exact evaluation of these 
integrals we shall simply find upper bounds for them 
assuming 0 < 'Yo « 1. In the second integral the 
integrand is a positive decreasing function of 'Y in 
the interval 'Yo to 1, therefore 

r exp {iN [In (1 - 'Y) + 'Y]h-1 d'Y 
-y. 

< 'Y;l exp iN[ln (1 - 'Yo) + 'Yo]. (46) 

For the first integral we have 

fa> exp aN[ln (1 + 'Y) - 'YJh-1 d'Y 
-yo 

< 'Y;l f'" (1 + 'Y)!Ne-jN-y d'Y 
-yo 

M 

= _'Y;leM z:: (-1)'(1 + 'Yo)M-r 
.-0 

and with this value of 'Yo (49) becomes very nearly 

P('Y(K), r) < (311'N)-t + (!)(3N3 m/2f1)-t 

X nQrj3N exp (-iN'Y2 + 1). (50) 

The result (50) shows the exponential decrease of 
the bound with increasing N, in contrast to the 
result in Ref. 1 where the bound varied as liN. 
We have assumed in the derivation of (50) that 
N'Y2 » 1 and 'Y « 1. Actually the replacement of 
exp {iN[ln (1 ± 'Y) =r 'Yll byexp (-3N'Y2/4) requires 
also that N'Y3 » 1. If 'Y does not satisfy these condi­
tions one still can write a formula similar to (50) 
but involving the functions exp (iN[ln (1 ± 'Y) =r 'Yll. 
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